SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Gang Jin) "

Sökning: WFRF:(Wang Gang Jin)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  •  
5.
  • Jin, Ying-Hui, et al. (författare)
  • Chemoprophylaxis, diagnosis, treatments, and discharge management of COVID-19 : An evidence-based clinical practice guideline (updated version)
  • 2020
  • Ingår i: Military Medical Research. - : Springer Science and Business Media LLC. - 2054-9369. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a rapidly spreading illness, coronavirus disease 2019 (COVID-19), affecting more than seventeen million people around the world. Diagnosis and treatment guidelines for clinicians caring for patients are needed. In the early stage, we have issued "A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version)"; now there are many direct evidences emerged and may change some of previous recommendations and it is ripe for develop an evidence-based guideline. We formed a working group of clinical experts and methodologists. The steering group members proposed 29 questions that are relevant to the management of COVID-19 covering the following areas: chemoprophylaxis, diagnosis, treatments, and discharge management. We searched the literature for direct evidence on the management of COVID-19, and assessed its certainty generated recommendations using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Recommendations were either strong or weak, or in the form of ungraded consensus-based statement. Finally, we issued 34 statements. Among them, 6 were strong recommendations for, 14 were weak recommendations for, 3 were weak recommendations against and 11 were ungraded consensus-based statement. They covered topics of chemoprophylaxis (including agents and Traditional Chinese Medicine (TCM) agents), diagnosis (including clinical manifestations, reverse transcription-polymerase chain reaction (RT-PCR), respiratory tract specimens, IgM and IgG antibody tests, chest computed tomography, chest x-ray, and CT features of asymptomatic infections), treatments (including lopinavir-ritonavir, umifenovir, favipiravir, interferon, remdesivir, combination of antiviral drugs, hydroxychloroquine/chloroquine, interleukin-6 inhibitors, interleukin-1 inhibitors, glucocorticoid, qingfei paidu decoction, lianhua qingwen granules/capsules, convalescent plasma, lung transplantation, invasive or noninvasive ventilation, and extracorporeal membrane oxygenation (ECMO)), and discharge management (including discharge criteria and management plan in patients whose RT-PCR retesting shows SARS-CoV-2 positive after discharge). We also created two figures of these recommendations for the implementation purpose. We hope these recommendations can help support healthcare workers caring for COVID-19 patients.
  •  
6.
  • Pecunia, Vincenzo, et al. (författare)
  • Roadmap on energy harvesting materials
  • 2023
  • Ingår i: Journal of Physics. - : IOP Publishing. - 2515-7639. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
  •  
7.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
  • 2008
  • Ingår i: Autophagy. - : Landes Bioscience. - 1554-8627 .- 1554-8635. ; 4:2, s. 151-175
  • Forskningsöversikt (refereegranskat)abstract
    • Research in autophagy continues to accelerate,1 and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.2,3 There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
  •  
8.
  • Qu, Gang, et al. (författare)
  • Enhancing the Performance of the p-n Heterostructure Electrolyte for Solid Oxide Fuel Cells via A-Site-Deficiency Engineering
  • 2023
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 15:42, s. 49154-49169
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconductor ionic electrolytes are attracting growing interest for developing low-temperature solid oxide fuel cells (LT-SOFCs). Our recent study has proposed a p-n heterostructure electrolyte based on perovskite oxide BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY) and ZnO, achieving promising fuel cell performance. Herein, to further improve the performance of the heterostructure electrolyte, an A-site-deficiency strategy is used to solely modify BCFZY for regulating the ionic conduction and catalytic activity of the heterostructure. Two new electrolytes, B0.9CFZY-ZnO and B0.8CFZY-ZnO, were developed and systematically studied. The results show that the two samples gain improved ionic conductivity and auxiliary catalytic activity after A-site deficiency as a result of the increment of the surface and interface oxygen vacancies. The single cells with B0.9CFZY-ZnO and B0.8CFZY-ZnO exhibit enhanced peak power outputs at 450-550 °C compared to the cell based on B1.0CFZY-ZnO (typically, 745 and 795 vs 542 mW cm-2 at 550 °C). Particular attention is paid to the impact of A-site deficiency on the interface energy band alignment between BxCFZY and ZnO, which suggests that the p-n heterojunction effect of BxCFZY-ZnO for charge carrier regulation can be tuned by A-site deficiency to enable high proton transport while avoiding fuel cell current leakage. This study thus confirms the feasibility of A-site-deficiency engineering to optimize the performance of the heterostructure electrolyte for developing LT-SOFCs.
  •  
9.
  • Xu, Hui, et al. (författare)
  • Impact of Pore Structure on Two-Electron Oxygen Reduction Reaction in Nitrogen-Doped Carbon Materials : Rotating Ring-Disk Electrode vs. Flow Cell
  • 2022
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 15:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of pore structure on the two-electron oxygen reduction reaction (ORR) in nitrogen-doped carbon materials is currently under debate, and previous studies are mainly limited to the rotating ring-disk electrode (RRDE) rather than the practical flow cell (FC) system. In this study, assisted by a group of reliable pore models, the impact of two pore structure parameters, that is, Brunauer–Emmett–Teller surface area (SBET) and micropore surface fraction (fmicro), on ORR activity and selectivity are investigated in both RRDE and FC. The ORR mass activity correlates positively to the SBET in the RRDE and FC because a higher SBET can host more active sites. The H2O2 selectivity is independent of fmicro in the RRDE but correlates negatively to fmicro in the FC. The inconsistency results from different states of the electrode in the RRDE and the FC. These insights will guide the design of carbon materials for H2O2 synthesis.
  •  
10.
  • Chen, Yan, et al. (författare)
  • Identifying systemic risk drivers of FinTech and traditional financial institutions: machine learning-based prediction and interpretation
  • 2024
  • Ingår i: European Journal of Finance. - : ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD. - 1351-847X .- 1466-4364.
  • Tidskriftsartikel (refereegranskat)abstract
    • We study systemic risk drivers of FinTech and traditional financial institutions under normal and extreme market conditions. We use machine learning (ML) techniques (i.e. random forest and gradient boosted regression trees) to evaluate the role of macroeconomic variables, firm characteristics, and network topologies as systemic risk drivers and perform the ML-based interpretation by Shapley individual and interaction values. We find that (i) the feature importance in driving systemic risk depends on market conditions; namely, market volatility (MVOL), individual stock volatility (IVOL), and market capitalization (MC) are positive drivers of systemic risk under extreme (downside and upside) market conditions, while under normal market conditions, institutions with high price-earnings ratio, large MC, and low IVOL play an essential role in stabilizing markets; (ii) macroeconomic variables are the most important extreme systemic risk drivers, while firm characteristics are more important under normal market conditions; and (iii) the interaction between IVOL and MC or MVOL is the significant source of extreme systemic risk, and MC is the most crucial interaction attribute under normal market conditions. The interactions between macroeconomic variables are the most prominent in systemic risk under different market conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
tidskriftsartikel (18)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Uddin, Gazi Salah (8)
Wang, Gang-Jin (8)
Zhu, You (6)
Xie, Chi (6)
Eskelinen, Eeva-Liis ... (4)
Kominami, Eiki (3)
visa fler...
Simon, Hans-Uwe (3)
Mograbi, Baharia (3)
Lopez-Otin, Carlos (3)
Noda, Takeshi (3)
Nishino, Ichizo (3)
Yue, Zhenyu (3)
Johansen, Terje (3)
Simonsen, Anne (3)
Kroemer, Guido (3)
Simone, Cristiano (3)
Sandri, Marco (3)
Sulzer, David (3)
Kundu, Mondira (3)
Martinet, Wim (3)
Sadoshima, Junichi (3)
Lü, Bo (3)
Ballabio, Andrea (3)
Stenmark, Harald (3)
Piacentini, Mauro (3)
Sasakawa, Chihiro (3)
Yoshimori, Tamotsu (3)
Dong, Zheng (3)
Klionsky, Daniel J. (3)
Abeliovich, Hagai (3)
Agostinis, Patrizia (3)
Biard-Piechaczyk, Ma ... (3)
Camougrand, Nadine (3)
Cecconi, Francesco (3)
Chen, Yingyu (3)
Chin, Lih-Shen (3)
Codogno, Patrice (3)
Coto-Montes, Ana (3)
Debnath, Jayanta (3)
Deretic, Vojo (3)
Djavaheri-Mergny, Mo ... (3)
Elazar, Zvulun (3)
Fueyo, Juan (3)
Gao, Fen-Biao (3)
He, You-Wen (3)
Huang, Wei-Pang (3)
Jiang, Xuejun (3)
Jin, Shengkan (3)
Kang, Chanhee (3)
Kimchi, Adi (3)
visa färre...
Lärosäte
Linköpings universitet (11)
Lunds universitet (5)
Karolinska Institutet (4)
Kungliga Tekniska Högskolan (3)
Stockholms universitet (3)
Göteborgs universitet (2)
visa fler...
Umeå universitet (2)
Uppsala universitet (2)
Sveriges Lantbruksuniversitet (2)
Högskolan i Halmstad (1)
Mittuniversitetet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Samhällsvetenskap (7)
Naturvetenskap (6)
Medicin och hälsovetenskap (6)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy