SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Jiabin 1993) "

Sökning: WFRF:(Wang Jiabin 1993)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dong, Tianyun, 1990, et al. (författare)
  • Numerical investigation of a high-speed train underbody flows: Studying flow structures through large-eddy simulation and assessment of steady and unsteady Reynolds-averaged Navier-Stokes and improved delayed detached eddy simulation performance
  • 2022
  • Ingår i: Physics of Fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 34:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The underbody flow of a truncated, 1:10 scaled, CRH380A model is investigated at Re = 2.78 × 105 in this paper. The large-eddy simulation (LES) is used to study the main features of the development of the underbody flow under the snowplow, in the bogie/cavity region and after the cavity (equip-cabin region). A grid independence study and a validation against experimental data have been done prior to the investigation. The snowplow region is dominated by a pair of separated counter-rotating vortices, which further affects the downstream flow. A strong shear layer is observed in the cavity region, and the turbulent flow is intensively triggered by the shear instability and the complex bogie components within the cavity region. The equip-cabin region allows the turbulent flow to develop without any disturbance, decreasing the turbulence intensity. Moreover, the steady and unsteady Reynolds-averaged Navier-Stokes (RANS, URANS) model and the improved delayed detached eddy simulation (IDDES) are used to compute the same flow, and to compare the results to LES. The solution differences, in terms of aerodynamic forces and the underbody flow state, are analyzed. Specifically, the minimum velocity discrepancy, at line2, between RANS (URANS) and LES is 14.4%, while IDDES is 3.6%. The solution accuracy vs the computational cost is also reported.
  •  
2.
  • He, Kan, et al. (författare)
  • Assessment of LES, IDDES and RANS approaches for prediction of wakes behind notchback road vehicles
  • 2021
  • Ingår i: Journal of Wind Engineering and Industrial Aerodynamics. - : Elsevier BV. - 0167-6105. ; 217
  • Tidskriftsartikel (refereegranskat)abstract
    • The capability of Large Eddy Simulations (LES), Improved Delayed Detached Eddy Simulations (IDDES) and Reynolds-Averaged Navier–Stokes Equations (RANS) to predict the flow behind notchback Ahmed body is investigated in the present paper. Simulations consider two specific models, with effective backlight angles of β1=17.8° and β2=21.0°, respectively. The focus of the study is on the prediction of the expected lateral asymmetry or symmetry of the near-wake flows. Results show that IDDES using coarse computational grids predicts the flow in agreement with LES using finer computational grids. RANS results in inaccurate flow predictions, attributed to its steady formulation relying on turbulence modelling being incapable of dealing with the studied flow. Modal analysis applying Proper Orthogonal Decomposition (POD) suggests the consistency of the wake dynamics between IDDES and LES. The presence of the wake bi-stability is validated by the wind tunnel experiment.
  •  
3.
  • He, Kan, 1991, et al. (författare)
  • Floor motion's influence on wake asymmetry of a notchback bluff body
  • 2022
  • Ingår i: Physics of Fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 34:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Large eddy simulations are used to explore the influence of floor motions on asymmetric flows around a notchback bluff body. The focus of this study is on the aerodynamic forces and the extent of natural wake asymmetry presented under moving and stationary ground conditions. The different ground condition has a notable influence on the aerodynamic force and the surrounding pressure distribution of the body. On the other hand, the wake asymmetry, known to be a sensitive phenomenon, is not evidently affected by the floor motion. However, quantitative analysis of the averaged and the statistic flow still suggests slight differences in the degree of wake asymmetry between the two ground conditions. Modal analysis applying proper orthogonal decomposition confirms that the asymmetric wake dynamics and the wake shedding frequency are not sensitive to the floor motion. The accuracy of the numerical simulation is established by a grid-independence study.
  •  
4.
  • He, Kan, et al. (författare)
  • Numerical investigation of the wake bi-stability behind a notchback Ahmed body
  • 2021
  • Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press (CUP). - 0022-1120 .- 1469-7645. ; 926, s. A36-1-A36-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-eddy simulations are used to investigate the origin of the wake asymmetry and symmetry behind notchback Ahmed bodies. Two different effective backlight angles, beta(1) = 17.8 degrees and beta(2) = 21.0 degrees, are simulated resulting in wake asymmetry and symmetry in flows without external perturbations, in agreement with previous experimental observations. In particular, the asymmetric case presents a bi-stable nature showing, in a random fashion, two stable mirrored states characterized by a left or right asymmetry for long periods. A random switch and several attempts to switch between the bi-stability are observed. The asymmetry of the flow is ascribed to the asymmetric separations and reattachments in the wake. The deflection of the near-wall flow structures behind the slant counteracting the asymmetry drives the wake to be temporarily symmetric, triggering the switching process of the bi-stable wake. The consequence of deflection that forces the flow structure to form on the opposite side of the slant is the decisive factor for a successful switch. Modal analysis applying proper orthogonal decomposition is used for the exploration of the wake dynamics of the bi-stable nature observed.
  •  
5.
  • Wang, Jiabin, 1993, et al. (författare)
  • The effect of bogie fairings on the slipstream and wake flow of a high-speed train. An IDDES study.
  • 2019
  • Ingår i: Journal of Wind Engineering and Industrial Aerodynamics. - : Elsevier BV. - 0167-6105. ; 191, s. 183-202
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, an improved delayed detached eddy simulation (IDDES) method based on shear-stress transport k-ω turbulence model has been used to investigate the slipstream and wake flow around a high-speed train with different bogie fairings at Re = 1.85 × 10^6. The accuracy of the numerical method has been validated by wind tunnel experiments and full-scale field tests. Further, the train slipstream, underbody flow and wake structures are compared for three cases. The results show that the bogies covered by full size bogie fairings significantly decrease the train slipstream velocity and weaken the pressure fluctuation around the high-speed train, especially near the bogie regions. Compared to the maximum slipstream velocity at trackside position in Case 2 (half size fairings), it increases by 15.2% in Case 1 (no fairing) and decreases by 16.1% in Case 3 (full size fairings), respectively. The larger size fairings are found to reduce the scale of longitudinal vortices and decrease the streamwise vorticity level in the wake region, thereby lowering the slipstream velocity distribution in the wake. Finally, the larger bogie fairings are recommended to improve the train aerodynamic performance as well as to improve the safety of trackside workers and passengers standing on the platform.
  •  
6.
  • Wang, Jiabin, 1993, et al. (författare)
  • Validation of PANS and effects of ground and wheel motion on the aerodynamic behaviours of a square-back van
  • 2023
  • Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press (CUP). - 0022-1120 .- 1469-7645. ; 958
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a numerical investigation of the effects of the moving ground and rotating wheels on the turbulent flow around a 1/10 scaled square-back van model. A comprehensive comparison among the partially averaged Navier-Stokes (PANS), large eddy simulation (LES) and particle image velocimetry (PIV) involving the aerodynamic drag, the wake topology, the velocity and the Reynolds stress profiles in the wake region is conducted. The proper orthogonal decomposition (POD) and fast Fourier transform (FFT) are applied to the shear layers shedding from the trailing edges to comment on the coherent structures and their frequency content. The Reynolds number for both simulations and experiments is set to Re = 2.5 × 105 based on the inlet velocity and the width of the model W = 0.17 m. The results show that PANS accurately predicts the flow field measured in experiments and predicted by a resolved LES, even with a low-resolution grid. The superiority of the PANS approach could provide good guidance for industrial research in predicting the turbulent flow around the square-back van model with affordable computational grids. The ground and wheel motion mechanism on the aerodynamic forces has been revealed by analysing the surface pressure distribution, the wheels' surrounding flow, the underbody flow characteristics and the turbulent wake structures. The effects of the ground and wheel motion on the frequency, evolution and development characteristics of the wake shear layers are analysed, thus providing relevant insights for future experimental investigations of square-back van models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy