SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Jialin) "

Sökning: WFRF:(Wang Jialin)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Jiao, Xingxing, et al. (författare)
  • Insight of electro-chemo-mechanical process inside integrated configuration of composite cathode for solid-state batteries
  • 2023
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 61
  • Tidskriftsartikel (refereegranskat)abstract
    • The complicated electro-chemo-mechanical process that occurs inside the composite cathode for solid-state batteries (SSBs), is of first importance to be insighted for the development of SSBs to seek higher energy density. Herein, exampled with layered transition-metal oxide of LiNixCoyMn1-x-yO2 (NCM), an electro-chemo-mechanical model containing electrochemical kinetics, finite-strain constitutive model and cohesive zone model was built to uncover the impact of ionic conductivity and Young's modulus (E) of solid-state electrolyte (SE) on the electro-chemo-mechanical process inside composite cathode and the intergranular failure of single cathode particle. The intergranular failure of NCM particles is powerfully determined by the Young's modulus of SE and the primary particle size, which is postponed by the coarse-primary NCM with soft SE of E=∼2 GPa. Compared with Young's modulus, increasing the ionic conductivity can uniform the distribution of both Li-ion and stress in the whole composite NCM cathode, realizing improved electrochemical performance with larger normalized capacity and lower the interfacial impendence. Hence, high-adequate ionic conductivity of 5 × 10−4 S cm−1 and soft mechanical property of E=∼2 GPa can be proposed as the guideline of SE for great electrochemical performance with prolongated lifespan of composite NCM cathode, paving an avenue to foster the application of SSBs.
  •  
3.
  • Wang, Qi, et al. (författare)
  • Improving Transferability and Immunity of Physical Layer Authentication by the Channel Time-Varying Pattern
  • 2024
  • Ingår i: IEEE Wireless Communications Letters. - : Institute of Electrical and Electronics Engineers (IEEE). - 2162-2337 .- 2162-2345. ; 13:3, s. 751-755
  • Tidskriftsartikel (refereegranskat)abstract
    • Channel State Information (CSI)-based Physical Layer Authentication (PLA) is typically a promising strategy for wireless security. However, existing algorithms fail to transfer across various scenarios and immunize against attacks forging CSI. To improve the transferability and immunity of PLA, we propose a PLA enhancement framework to analyze, enhance, and assess authentication. Firstly, we provide a theoretical analysis method to discover the factors affecting the transferability and immunity of PLA. Secondly, inspired by the above discovery, an enhanced PLA algorithm is developed based on the channel time-varying pattern. Finally, we theoretically assess the scenario transferability and provide a closed-form expression for the bypassing condition of authentication. Furthermore, experimental results validate the practical applicability of our theoretical insights.
  •  
4.
  • Zhang, Jialin, et al. (författare)
  • Males are more sensitive to reward and less sensitive to loss than females among people with internet gaming disorder : FMRI evidence from a card-guessing task
  • 2020
  • Ingår i: BMC Psychiatry. - : BioMed Central. - 1471-244X. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Many studies have found an interesting issue in the Internet gaming disorder (IGD): males are always observed to be the majority. However, there are little research to exploring the differences in the neural mechanisms between males and females in decision-making process among people with IGD. Therefore, explore the reward/loss processing between different gender with IGD could help in understanding the underlying neural mechanism of IGD. Methods: Data from functional magnetic resonance imaging (fMRI) were collected from 111 subjects (IGD: 29 males, 25 females; recreational internet game user (RGU): 36 males, 21 females) while they were performing a card-guessing task. We collected and compared their brain features when facing the win and loss conditions in different groups. Results: For winning conditions, IGD group showed hypoactivity in the lingual gyrus than RGU group, male players showed hyperactivity in the left caudate nucleus, bilateral cingulate gyrus, right middle frontal gyrus (MFG), right precuneus and inferior parietal lobule relative to the females. And significant sex-by-group interactions results showed higher brain activities in the thalamus, parahippocampal gyrus and lower brain activities in Inferior frontal gyrus (IFG) were observed in males with IGD than females. For losing conditions, IGD group showed hypoactivity in the left lingual gyrus, parahippocampal gyrus and right anterior cingulate cortex (ACC) compared to the RGU group, male players showed hyperactive left caudate nucleus and hypoactive right middle occipital gyrus relative to females. And significant sex-by-group interactions results showed that compared to females with IGD, males with IGD showed decreased brain activities in the IFG and lingual gyrus. Conclusions: First, there appeared to be no difference in reward processing between the IGD and RGU group, but IGD showed less sensitivity to loss. Secondly, male players showed more sensitivity to rewards and less sensitivity to losses. Last but not least, males and females showed opposite activation patterns in IGD degree and rewards/losses processing. And male IGD subjects are more sensitive to reward and less sensitive to loss than females, which might be the reason for the gender different rates on IGD. © 2020 The Author(s).
  •  
5.
  • Chen, Zhixuan, et al. (författare)
  • Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering
  • 2022
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 8:6, s. 2321-2335
  • Forskningsöversikt (refereegranskat)abstract
    • Large-sized bone defects are a great challenge in clinics and considerably impair the quality of patients' daily life. Tissue engineering strategies using cells, scaffolds, and bioactive molecules to regulate the microenvironment in bone regeneration is a promising approach. Zinc, magnesium, and iron ions are natural elements in bone tissue and participate in many physiological processes of bone metabolism and therefore have great potential for bone tissue engineering and regeneration. In this review, we performed a systematic analysis on the effects of zinc, magnesium, and iron ions in bone tissue engineering. We focus on the role of these ions in properties of scaffolds (mechanical strength, degradation, osteogenesis, antibacterial properties, etc.). We hope that our summary of the current research achievements and our notifications of potential strategies to improve the effects of zinc, magnesium, and iron ions in scaffolds for bone repair and regeneration will find new inspiration and breakthroughs to inspire future research.
  •  
6.
  • Chi, Jiayu, et al. (författare)
  • Topographic Orientation of Scaffolds for Tissue Regeneration : Recent Advances in Biomaterial Design and Applications
  • 2022
  • Ingår i: Biomimetics. - : MDPI. - 2313-7673. ; 7:3
  • Forskningsöversikt (refereegranskat)abstract
    • Tissue engineering to develop alternatives for the maintenance, restoration, or enhancement of injured tissues and organs is gaining more and more attention. In tissue engineering, the scaffold used is one of the most critical elements. Its characteristics are expected to mimic the native extracellular matrix and its unique topographical structures. Recently, the topographies of scaffolds have received increasing attention, not least because different topographies, such as aligned and random, have different repair effects on various tissues. In this review, we have focused on various technologies (electrospinning, directional freeze-drying, magnetic freeze-casting, etching, and 3-D printing) to fabricate scaffolds with different topographic orientations, as well as discussed the physicochemical (mechanical properties, porosity, hydrophilicity, and degradation) and biological properties (morphology, distribution, adhesion, proliferation, and migration) of different topographies. Subsequently, we have compiled the effect of scaffold orientation on the regeneration of vessels, skin, neural tissue, bone, articular cartilage, ligaments, tendons, cardiac tissue, corneas, skeletal muscle, and smooth muscle. The compiled information in this review will facilitate the future development of optimal topographical scaffolds for the regeneration of certain tissues. In the majority of tissues, aligned scaffolds are more suitable than random scaffolds for tissue repair and regeneration. The underlying mechanism explaining the various effects of aligned and random orientation might be the differences in “contact guidance”, which stimulate certain biological responses in cells.
  •  
7.
  • Jiao, Xingxing, et al. (författare)
  • Highly Energy-Dissipative, Fast Self-Healing Binder for Stable Si Anode in Lithium-Ion Batteries
  • 2021
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 31:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A double-wrapped binder has been rationally designed with high Young's modulus polyacrylic acid (PAA) inside and low Young's modulus bifunctional polyurethane (BFPU) outside to address the large inner stress of silicon anode with drastic volume changes during cycling. Harnessing the "hard to soft" gradient distribution strategy, the rigid PAA acts as a protective layer to dissipate the inner stress first during lithiation, while the elastic binder BFPU serves as a buffer layer to disperse residual stress, and thus avoids structural damage of rigid PAA. Moreover, the introduction of BFPU with fast self-healing ability can dynamically recover the microcracks arising from large stress, further ensuring the integrity of silicon anode. This multifunctional binder with smart design of double-wrapped structure provides enlightenment on enlarging the cycling life of high-energy-density lithium-ion batteries that suffer enormous volume change during the cycling process.
  •  
8.
  • Liu, Yangyang, et al. (författare)
  • Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal
  • 2021
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844 .- 2198-3844. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to an ultrahigh theoretical specific capacity of 3860 mAh g−1, lithium (Li) is regarded as the ultimate anode for high-energy-density batteries. However, the practical application of Li metal anode is hindered by safety concerns and low Coulombic efficiency both of which are resulted fromunavoidable dendrite growth during electrodeposition. This study focuses on a critical parameter for electrodeposition, the exchange current density, which has attracted only little attention in research on Li metal batteries. A phase-field model is presented to show the effect of exchange current density on electrodeposition behavior of Li. The results show that a uniform distribution of cathodic current density, hence uniform electrodeposition, on electrode is obtained with lower exchange current density. Furthermore, it is demonstrated that lower exchange current density contributes to form a larger critical radius of nucleation in the initial electrocrystallization that results in a dense deposition of Li, which is a foundation for improved Coulombic efficiency and dendrite-free morphology. The findings not only pave the way to practical rechargeable Li metal batteries but can also be translated to the design of stable metal anodes, e.g., for sodium (Na), magnesium (Mg), and zinc (Zn) batteries.
  •  
9.
  • Sheng, Renwang, et al. (författare)
  • Material stiffness in cooperation with macrophage paracrine signals determines the tenogenic differentiation of mesenchymal stem cells
  • 2023
  • Ingår i: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 10:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Stiffness is an important physical property of biomaterials that determines stem cell fate. Guiding stem cell differentiation via stiffness modulation has been considered in tissue engineering. However, the mechanism by which material stiffness regulates stem cell differentiation into the tendon lineage remains controversial. Increasing evidence demonstrates that immune cells interact with implanted biomaterials and regulate stem cell behaviors via paracrine signaling; however, the role of this mechanism in tendon differentiation is not clear. In this study, polydimethylsiloxane (PDMS) substrates with different stiffnesses are developed, and the tenogenic differentiation of mesenchymal stem cells (MSCs) exposed to different stiffnesses and macrophage paracrine signals is investigated. The results reveal that lower stiffnesses facilitates tenogenic differentiation of MSCs, while macrophage paracrine signals at these stiffnesses suppress the differentiation. When exposed to these two stimuli, MSCs still exhibit enhanced tendon differentiation, which is further elucidated by global proteomic analysis. Following subcutaneous implantation in rats for 2 weeks, soft biomaterial induces only low inflammation and promotes tendon-like tissue formation. In conclusion, the study demonstrates that soft, rather than stiff, material has a greater potential to guide tenogenic differentiation of stem cells, which provides comprehensive evidence for optimized bioactive scaffold design in tendon tissue engineering.
  •  
10.
  • Wang, Jialin, et al. (författare)
  • Excess thermodynamic properties of thin water films confined between hydrophobized gold surfaces
  • 2011
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 364:1, s. 257-263
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface forces between gold surfaces were measured in pure water at temperatures in the range of 10-40 degrees C using an atomic force microscope (AFM). The surfaces were hydrophobized by self-assembly of alkanethiols (C(n)SH) with n = 2 and 16 in ethanol solutions. The data were used to determine the changes in excess free energies (Delta G(f)) of the thin water films per unit area by using the Derjaguin approximation [1]. The free energy data were then used to determine the changes in excess film entropy (Delta S(f)) and the excess film enthalpy (Delta H(f)) per unit area. The results show that both Delta S(f) and Delta H(f) decrease with decreasing film thickness, suggesting that the macroscopic hydrophobic interaction involves building some kind of structures in the intervening thin films of water. It was found that vertical bar Delta H(f)vertical bar > vertical bar T Delta S(f)vertical bar, which is a necessary condition for an attractive force to appear when the enthalpy and entropy changes are both negative. That macroscopic hydrophobic interaction is enthalpically driven is contrary to the hydrophobic interactions at molecular scale. The results obtained in the present work are used to discuss possible origins for the long-range attractions observed between hydrophobic surfaces.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (12)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (15)
Författare/redaktör
Zhang, Wei (5)
Xiong, Shizhao, 1985 (4)
Yu, Yang (1)
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
visa fler...
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
Liu, Jia (1)
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Sörelius, Karl, 1981 ... (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Backman, Lars (1)
Yan, Hong (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Wang, Jun (1)
Matic, Aleksandar, 1 ... (1)
Sadd, Matthew, 1994 (1)
Pollesello, Piero (1)
Conesa, Ana (1)
El-Esawi, Mohamed A. (1)
Zhang, Weijia (1)
Li, Jian (1)
Marinello, Francesco (1)
Frilander, Mikko J. (1)
Wei, Pan (1)
Badie, Christophe (1)
Zhao, Jing (1)
Li, You (1)
Bansal, Abhisheka (1)
Rahman, Proton (1)
Parchi, Piero (1)
Polz, Martin (1)
Ijzerman, Adriaan P. (1)
Subhash, Santhilal, ... (1)
Quinn, Terence J. (1)
Uversky, Vladimir N. (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (5)
Umeå universitet (4)
Kungliga Tekniska Högskolan (4)
Blekinge Tekniska Högskola (2)
Göteborgs universitet (1)
Uppsala universitet (1)
visa fler...
Högskolan i Halmstad (1)
Stockholms universitet (1)
Lunds universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Teknik (8)
Naturvetenskap (7)
Medicin och hälsovetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy