SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Qianlong) "

Sökning: WFRF:(Wang Qianlong)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Nan, et al. (författare)
  • Vertically Aligned Graphene-based Thermal Interface Material with High Thermal Conductivity
  • 2018
  • Ingår i: THERMINIC 2018 - 24th International Workshop on Thermal Investigations of ICs and Systems, Proceedings. - 9781538667590 ; , s. 285-288
  • Konferensbidrag (refereegranskat)abstract
    • High density packaging in combination with increased transistor integration inevitably leads to challenging power densities in terms of thermal management. Here, a novel highly thermal conductive and lightweight graphene based thermal interface materials (GT) was developed for thermal management in power devices. Composed by vertically graphene structures, GTs provide a continuous high thermal conductivity phase along the path of thermal transport, which lead to outstanding thermal properties. The highest through-plane thermal conductivity GTs reaches to 1000 W/mK, which is orders of magnitude higher than conventional TIMs, and even outperforms the pure indium by over ten times. In addition, a thin layer of indium metal that coated on the surface of GTs can easily form alloys with many other metals at a relatively low reflow temperature. Therefore, GTs, as an excellent TIM, can provide complete physical contact between two surfaces with minimized the contact resistance. The measured total thermal resistance and effective thermal conductivity by using 300 mu m thick GTs as TIM between two copper blocks reaches to similar to 3.7 Kmm(2)/W and similar to 90 W/mK, respectively. Such values are significantly higher than the randomly dispersed composites presented above, and show even better thermal performance than pure indium bonding. In addition, GTs has more advantages than pure indium bonding, including low weight (density < 2 g/cm(3)), low complexity during assembly and maintainability. The resulting GTs thus opens new opportunities for addressing large heat dissipation issues in form-factor driven electronics and other high power driven systems.
  •  
2.
  • Chen, Shujing, et al. (författare)
  • Manufacturing Graphene-Encapsulated Copper Particles by Chemical Vapor Deposition in a Cold Wall Reactor
  • 2019
  • Ingår i: ChemistryOpen. - : Wiley. - 2191-1363. ; 8:1, s. 58-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional fillers, such as Ag, are commonly employed for effectively improving the thermal or electrical conductivity in polymer composites. However, a disadvantage of such a strategy is that the cost and performance cannot be balanced simultaneously. Therefore, the drive to find a material with both a cost efficient fabrication process and excellent performance attracts intense research interest. In this work, inspired by the core-shell structure, we developed a facile manufacturing method to prepare graphene-encapsulated Cu nanoparticles (GCPs) through utilizing an improved chemical vapor deposition (CVD) system with a cold wall reactor. The obtained GCPs could retain their spherical shape and exhibited an outstanding thermal stability up to 179 degrees C. Owing to the superior thermal conductivity of graphene and excellent oxidation resistance of GCPs, the produced GCPs are practically used in a thermally conductive adhesive (TCA), which commonly consists of Ag as the functional filler. Measurement shows a substantial 74.6 % improvement by partial replacement of Ag with GCPs.
  •  
3.
  • Fu, Yifeng, 1984, et al. (författare)
  • Graphene related materials for thermal management
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Almost 15 years have gone ever since the discovery of graphene as a single atom layer. Numerous papers have been published to demonstrate its high electron mobility, excellent thermal and mechanical as well as optical properties. We have recently seen more and more applications towards using graphene in commercial products. This paper is an attempt to review and summarize the current status of the research of the thermal properties of graphene and other 2D based materials including the manufacturing and characterization techniques and their applications, especially in electronics and power modules. It is obvious from the review that graphene has penetrated the market and gets more and more applications in commercial electronics thermal management context. In the paper, we also made a critical analysis of how mature the manufacturing processes are; what are the accuracies and challenges with the various characterization techniques and what are the remaining questions and issues left before we see further more applications in this exciting and fascinating field.
  •  
4.
  • Chen, Shujing, et al. (författare)
  • Scalable production of thick graphene films for next generation thermal management applications
  • 2020
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223. ; 167, s. 270-277
  • Tidskriftsartikel (refereegranskat)abstract
    • With the increasing demand on integration and better performance of portable electronics devices, the system operation temperatures are expected to continue to increase, leading eventually to degeneration in functional performance and reliability. Therefore, demand for thermal management materials that effectively spread heat and reduce heat density is urgent. The existing solution of pyrolytic graphite film (PGF) is unsatisfactory due to their low heat flux carrying capacity or low thermal conductivity, as well as poor mechanical performance. This work solves the problem by substituting ultra-thick (>75 mm) graphene film (GF) for PGF, offering more than three times higher heat flux carrying capacity. The conjugation of large crystallinity and firm structures endows GFs with excellent thermal conductive performance (up to 1204 +/- 35 W m(-1) K-1), great heat flux carrying capacity, and good foldability (5000 cycles folding). In addition to this, such a GF is produced based on an economically efficient and quasi industrial method incorporating continuous high-pressure homogenization processing (HPH), indicating an enormous potential as a new pathway to thermal management applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy