SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Rongsheng) "

Sökning: WFRF:(Wang Rongsheng)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dai, Lei, et al. (författare)
  • AME : A Cross-Scale Constellation of CubeSats to Explore Magnetic Reconnection in the Solar-Terrestrial Relation
  • 2020
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • A major subset of solar-terrestrial relations, responsible, in particular, for the driver of space weather phenomena, is the interaction between the Earth's magnetosphere and the solar wind. As one of the most important modes of the solar-wind-magnetosphere interaction, magnetic reconnection regulates the energy transport and energy release in the solar-terrestrial relation. In situ measurements in the near-Earth space are crucial for understanding magnetic reconnection. Past and existing spacecraft constellation missions mainly focus on the measurement of reconnection on plasma kinetic-scales. Resolving the macro-scale and cross-scale aspects of magnetic reconnection is necessary for accurate assessment and predictions of its role in the context of space weather. Here, we propose the AME (self-Adaptive Magnetic reconnection Explorer) mission consisting of a cross-scale constellation of 12+ CubeSats and one mother satellite. Each CubeSat is equipped with instruments to measure magnetic fields and thermal plasma particles. With multiple CubeSats, the AME constellation is intended to make simultaneous measurements at multiple scales, capable of exploring cross-scale plasma processes ranging from kinetic scale to macro scale.
  •  
2.
  • Lu, Quanming, et al. (författare)
  • Features of separatrix regions in magnetic reconnection : Comparison of 2-D particle-in-cell simulations and Cluster observations
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115:11
  • Tidskriftsartikel (refereegranskat)abstract
    • In collisionless magnetic reconnection, the in-plane Hall currents are carried mainly by the magnetized electrons. The in-plane Hall currents are directed toward the X line along the magnetic field lines just inside the separatrices and away from the X line along the separatrices. Such a current system leads to the quadrupole out-of-plane magnetic field with the peaks between the regions carrying the in-plane currents. Simultaneously, the electron flow toward the X line along the separatrices causes electron density depletions along the separatrices. In this paper, the features of separatrix regions in magnetic reconnection and the relations between the electron density depletions and the out-of-plane magnetic field are investigated with both two-dimensional particle-in-cell simulations and Cluster observations. We conclude that the electron density depletions are formed because of the magnetic mirror, and they are outside the peaks of the out-of-plane magnetic field. Such a theoretical prediction is confirmed by both simulations and observations.
  •  
3.
  • Lu, San, et al. (författare)
  • Magnetotail reconnection onset caused by electron kinetics with a strong external driver
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetotail reconnection plays a crucial role in explosive energy conversion in geospace. Because of the lack of in-situ spacecraft observations, the onset mechanism of magnetotail reconnection, however, has been controversial for decades. The key question is whether magnetotail reconnection is externally driven to occur first on electron scales or spontaneously arising from an unstable configuration on ion scales. Here, we show, using spacecraft observations and particle-in-cell (PIC) simulations, that magnetotail reconnection starts from electron reconnection in the presence of a strong external driver. Our PIC simulations show that this electron reconnection then develops into ion reconnection. These results provide direct evidence for magnetotail reconnection onset caused by electron kinetics with a strong external driver.
  •  
4.
  • Wang, Rongsheng, et al. (författare)
  • An Electron-Scale Current Sheet Without Bursty Reconnection Signatures Observed in the Near-Earth Tail
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:10, s. 4542-4549
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of a current sheet as thin as the electron scale are extremely rare in the near-Earth magnetotail. By measurement from the novel Magnetospheric Multiscale mission in the near-Earth magnetotail, we identified such an electron-scale current sheet and determined its detailed properties. The electron current sheet was bifurcated, with a half-thickness of nine electron inertial lengths, and was sandwiched between the Hall field. Because of the strong Hall electric field, the super-Alfvenic electron bulk flows were created mainly by the electric field drift, leading to the generation of the strong electron current. Inevitably, a bifurcated current sheet was formed since the Hall electric field was close to zero at the center of the current sheet. Inside the electron current sheet, the electrons were significantly heated while the ion temperature showed no change. The ions kept moving at a low speed, which was not affected by this electron current sheet. The energy dissipation was negligible inside the current sheet. The observations indicate that a thin current sheet, even as thin as electron scale, is not the sufficient condition for triggering bursty reconnection.
  •  
5.
  • Wang, Rongsheng, et al. (författare)
  • Interaction of Magnetic Flux Ropes Via Magnetic Reconnection Observed at the Magnetopause
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:10, s. 10436-10447
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the high-resolution field and plasma data obtained from the Magnetospheric Multiscale mission at the magnetopause, a series of three flux transfer events was observed one after another inside southward ion flows, without time gap between any two successive flux ropes. Using the plasma measurements, the current densities within the flux ropes were studied in detail. The currents within the first two flux ropes, dubbed Fr1 and Fr2, were composed of a series of well-separated filamentary currents. The thickness of the filamentary currents and the gap between them were sub ion scale, occasionally dropped down to electron scale. In the third flux rope Fr3 which was closest to the expected reconnection X line, the current displayed a singular compact current layer, was ion scale in width and concentrated on its center. Considering the location of the flux ropes relative to the reconnection X line, we suggested that the current density could be a singular structure when the flux rope was just created and then fragmented into a series of filamentary currents as time. By examining the interregions between Fr1 and Fr2, and between Fr2 and Fr3, reconnection was only confirmed to occur between Fr2 and Fr3 and no reconnection signature was found between Fr1 and Fr2. It seems that magnetic field compression resulted from collision of two neighboring flux ropes is one necessary condition for the occurrence of the coalescence.
  •  
6.
  • Wang, Rongsheng, et al. (författare)
  • Asymmetry in the current sheet and secondary magnetic flux ropes during guide field magnetic reconnection
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A07223-
  • Tidskriftsartikel (refereegranskat)abstract
    • A magnetic reconnection event with a moderate guide field encountered by Cluster in the near-Earth tail on 28 August 2002 is reported. The guide field points dawnward during this event. The quadrupolar structure of the Hall magnetic field within the ion diffusion region is distorted toward the northern hemisphere in the earthward part while toward the southern hemisphere tailward part of X-line. Observations of current density and electron pitch angle distribution indicate that the distorted quadrupolar structure is formed due to a deformed Hall electron current system. Cluster crossed the ion diffusion region from south to north earthward of the X-line. An electron density cavity is confirmed in the northern separatrix layer while a thin current layer (TCL) is measured in the southern separatrix layer. The TCL is formed due to electrons injected into the X-line along the magnetic field. These observations are different from simulation results where the cavity is produced associated with inflow electrons along the southern separatrix while the strong current sheet appears with the outflow electron beam along the northern separatrix. The energy of the inflowing electron in the separatrix layer could extend up to 10 keV. Energetic electron fluxes up to 50 keV have a clear peak in the TCL. The length of the separatrix layer is estimated to be at least 65 c/omega(pi). These observations suggest that electrons could be pre-accelerated before they are ejected into the X-line region along the separatrix. Multiple secondary flux ropes moving earthward are observed within the diffusion region. These secondary flux ropes are all identified earthward of the observed TCL. These observations further suggest there are numerous small scale structures within the ion diffusion region.
  •  
7.
  • Wang, Rongsheng, et al. (författare)
  • Observation of double layer in the separatrix region during magnetic reconnection
  • 2014
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 41:14, s. 4851-4858
  • Tidskriftsartikel (refereegranskat)abstract
    • We present in situ observation of double layer (DL) and associated electron measurement in the subspin time resolution in the separatrix region during reconnection for the first time. The DL is inferred to propagate away from the X line at a velocity of about ion acoustic speed and the parallel electric field carried by the DL can reach -20 mV/m. The electron displays a beam distribution inside the DL and streams toward the X line with a local electron Alfven velocity. A series of electron holes moving toward the X line are observed in the wake of the DL. The identification of multiple similar DLs indicates that they are persistently produced and therefore might play an important role in energy conversion during reconnection. The observation suggests that energy dissipation during reconnection can occur in any region where the DL can reach.
  •  
8.
  • Wang, Rongsheng, et al. (författare)
  • Observation of multiple sub-cavities adjacent to single separatrix
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:11, s. 2511-2517
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate a direct south-north crossing of a reconnection ion diffusion region in the magnetotail. During this crossing, multiple electron density dips with a further density decrease within the cavity, called sub-cavities, adjacent to the northern separatrix are observed. The correlation between electron density sub-cavities and strong electric field fluctuations is obvious. Within one of the sub-cavities, a series of very strong oscillating perpendicular electric field and patchy parallel electric field are observed. The parallel electric field is nearly unipolar and directs away from X line. In the same region, inflow electrons with energy up to 100keV are injected into the X line. Based on the observations, we conclude that the high-energy inflowing electrons are accelerated by the patchy parallel electric field. Namely, electrons have been effectively accelerated while they are flowing into the X line along the separatrix. The observations indicate that the electron acceleration region is widely larger than the predicted electron diffusion region in the classical Hall magnetic reconnection model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy