SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Ruihan) "

Sökning: WFRF:(Wang Ruihan)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Yulong, et al. (författare)
  • Hypercysteinemia promotes atherosclerosis by reducing protein S-nitrosylation.
  • 2015
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier BV. - 1950-6007 .- 0753-3322. ; 70, s. 253-259
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein S-nitrosylation plays important role in the regulation of cardiovascular functions in nitric oxide (NO) Pathway. Hypercysteinemia (HHcy) is an independently risk factor for atherosclerosis. We hypothesized that HHcy promotes atherosclerosis by reducing level of vascular protein S-nitrosylation. The aim of present study is to investigate effect of HHcy on vascular protein S-nitrosylation. A total of 45 male apoE-/- mice were randomly divided into three groups. The control group was fed a Western-type diet. The HHcy group was fed a diet containing 4.4% l-methionine, and the HHcy+NONOate group was fed a diet containing 4.4% l-methionine and administrated NONOate (ip). Human umbilical vein endothelial cells were performed for in vitro experiment. Plasma lipids were measured every 4 weeks. After 12 weeks, aortic atherosclerotic lesion areas were detected as well as cellular components. The levels of plasma homocysteine (Hcy) and NO were measured. S-nitrosylation was detected using immunofluorescence, and further confirmed by biotin switch method. We found that compared with the control group, Hcy levels, and atherosclerotic plaque, and content of vascular smooth muscle cells and macrophages in lesions significantly increased, and levels of NO significantly decreased in the HHcy group. However, NONOate reverses this effect. In addition, Hcy significantly reduced protein S-nitrosylation in human umbilical vein endothelial cells. This reduction of protein S-nitrosylation was accompanied by reduced levels of NO. Our results suggested that Hcy promoted atherosclerosis by inhibiting vascular protein S-nitrosylation.
  •  
2.
  • Dai, Ruihan, et al. (författare)
  • Electron crystallography reveals atomic structure of metal-organic nanoplate with Hf12(µ3-O)8(µ3-OH)8(µ2-OH)6 secondary building unit
  • 2017
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 56:14, s. 8128-8134
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoscale metal–organic frameworks (nMOFs) have shown tremendous potential in cancer therapy and biomedical imaging. However, their small dimensions present a significant challenge in structure determination by single-crystal X-ray crystallography. We report here the structural determination of nMOFs by rotation electron diffraction (RED). Two isostructural Zr- and Hf-based nMOFs with linear biphenyldicarboxylate (BPDC) or bipyridinedicarboxylate (BPYDC) linkers are stable under intense electron beams to allow the collection of high-quality RED data, which reveal a MOF structure with M12(μ3-O)8(μ3-OH)8(μ2-OH)6 (M = Zr, Hf) secondary building units (SBUs). The nMOF structures differ significantly from their UiO bulk counterparts with M6(μ3-O)4(μ3-OH)4 SBUs and provide the foundation for clarifying the structures of a series of previously reported nMOFs with significant potential in cancer therapy and biological imaging. Our work clearly demonstrates the power of RED in determining nMOF structures and elucidating the formation mechanism of distinct nMOF morphologies.
  •  
3.
  • Zhao, Lue Ping, et al. (författare)
  • Association of HLA-DQ Heterodimer Residues -18β and β57 With Progression From Islet Autoimmunity to Diabetes in the Diabetes Prevention Trial-Type 1
  • 2022
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 45:7, s. 1610-1620
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The purpose was to test the hypothesis that the HLA-DQαβ heterodimer structure is related to the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D).RESEARCH DESIGN AND METHODS: Next-generation targeted sequencing was used to genotype HLA-DQA1-B1 class II genes in 670 subjects in the Diabetes Prevention Trial-Type 1 (DPT-1). Coding sequences were translated into DQ α- and β-chain amino acid residues and used in hierarchically organized haplotype (HOH) association analysis to identify motifs associated with diabetes onset.RESULTS: The opposite diabetes risks were confirmed for HLA DQA1*03:01-B1*03:02 (hazard ratio [HR] 1.36; P = 2.01 ∗ 10-3) and DQA1*03:03-B1*03:01 (HR 0.62; P = 0.037). The HOH analysis uncovered residue -18β in the signal peptide and β57 in the β-chain to form six motifs. DQ*VA was associated with faster (HR 1.49; P = 6.36 ∗ 10-4) and DQ*AD with slower (HR 0.64; P = 0.020) progression to diabetes onset. VA/VA, representing DQA1*03:01-B1*03:02 (DQ8/8), had a greater HR of 1.98 (P = 2.80 ∗ 10-3). The DQ*VA motif was associated with both islet cell antibodies (P = 0.023) and insulin autoantibodies (IAAs) (P = 3.34 ∗ 10-3), while the DQ*AD motif was associated with a decreased IAA frequency (P = 0.015). Subjects with DQ*VA and DQ*AD experienced, respectively, increasing and decreasing trends of HbA1c levels throughout the follow-up.CONCLUSIONS: HLA-DQ structural motifs appear to modulate progression from islet autoimmunity to diabetes among at-risk relatives with islet autoantibodies. Residue -18β within the signal peptide may be related to levels of protein synthesis and β57 to stability of the peptide-DQab trimolecular complex.
  •  
4.
  • Zhao, Lue Ping, et al. (författare)
  • Eleven Amino Acids of HLA-DRB1 and Fifteen Amino Acids of HLA-DRB3, 4, and 5 Include Potentially Causal Residues Responsible for the Risk of Childhood Type 1 Diabetes
  • 2019
  • Ingår i: Diabetes. - Arlington, VA, United States : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:8, s. 1692-1704
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-generation targeted sequencing of HLA-DRB1 and HLA-DRB3, -DRB4, and -DRB5 (abbreviated as DRB345) provides high resolution of functional variant positions to investigate their associations with type 1 diabetes risk and with autoantibodies against insulin (IAA), GAD65 (GADA), IA-2 (IA-2A), and ZnT8 (ZnT8A). To overcome exceptional DR sequence complexity as a result of high polymorphisms and extended linkage disequilibrium among the DR loci, we applied a novel recursive organizer (ROR) to discover disease-associated amino acid residues. ROR distills disease-associated DR sequences and identifies 11 residues of DRB1, sequences of which retain all significant associations observed by DR genes. Furthermore, all 11 residues locate under/adjoining the peptide-binding groove of DRB1, suggesting a plausible functional mechanism through peptide binding. The 15 residues of DRB345, located respectively in the beta 49-55 homodimerization patch and on the face of the molecule shown to interact with and bind to the accessory molecule CD4, retain their significant disease associations. Further ROR analysis of DR associations with autoantibodies finds that DRB1 residues significantly associated with ZnT8A and DRB345 residues with GADA. The strongest association is between four residues (beta 14, beta 25, beta 71, and beta 73) and IA-2A, in which the sequence ERKA confers a risk association (odds ratio 2.15, P = 10(-18)), and another sequence, ERKG, confers a protective association (odds ratio 0.59, P = 10(-11)), despite a difference of only one amino acid. Because motifs of identified residues capture potentially causal DR associations with type 1 diabetes, this list of residuals is expected to include corresponding causal residues in this study population.
  •  
5.
  • Zhao, Lue Ping, et al. (författare)
  • HLA Class II (DR, DQ, DP) Genes Were Separately Associated With the Progression From Seroconversion to Onset of Type 1 Diabetes Among Participants in Two Diabetes Prevention Trials (DPT-1 and TN07)
  • Ingår i: Diabetes Care. - 1935-5548.
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To explore associations of HLA class II genes (HLAII) with the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D).RESEARCH DESIGN AND METHODS: Next-generation targeted sequencing was used to genotype eight HLAII genes (DQA1, DQB1, DRB1, DRB3, DRB4, DRB5, DPA1, DPB1) in 1,216 participants from the Diabetes Prevention Trial-1 and Randomized Diabetes Prevention Trial with Oral Insulin sponsored by TrialNet. By the linkage disequilibrium, DQA1 and DQB1 are haplotyped to form DQ haplotypes; DP and DR haplotypes are similarly constructed. Together with available clinical covariables, we applied the Cox regression model to assess HLAII immunogenic associations with the disease progression.RESULTS: 1) The current investigation updated the previously reported genetic associations of DQA1*03:01-DQB1*03:02 (hazard ratio [HR] = 1.25, P = 3.50*10-3) and DQA1*03:03-DQB1*03:01 (HR = 0.56, P = 1.16*10-3), and also uncovered a risk association with DQA1*05:01-DQB1*02:01 (HR = 1.19, P = 0.041). 2) After adjusting for DQ, DPA1*02:01-DPB1*11:01 and DPA1*01:03-DPB1*03:01 were found to have opposite associations with progression (HR = 1.98 and 0.70, P = 0.021 and 6.16*10-3, respectively). 3) DRB1*03:01-DRB3*01:01 and DRB1*03:01-DRB3*02:02, sharing the DRB1*03:01, had opposite associations (HR = 0.73 and 1.44, P = 0.04 and 0.019, respectively), indicating a role of DRB3. Meanwhile, DRB1*12:01-DRB3*02:02 and DRB1*01:03 alone were found to associate with progression (HR = 2.6 and 2.32, P = 0.018 and 0.039, respectively). 4) Through enumerating all heterodimers, it was found that both DQ and DP could exhibit associations with disease progression.CONCLUSIONS: These results suggest that HLAII polymorphisms influence progression from islet autoimmunity to T1D among at-risk subjects with islet autoantibodies.
  •  
6.
  • Zhao, Lue Ping, et al. (författare)
  • Motifs of Three HLA-DQ Amino Acid Residues (alpha 44, beta 57, beta 135) Capture Full Association With the Risk of Type 1 Diabetes in DQ2 and DQ8 Children
  • 2020
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 69:7, s. 1573-1587
  • Tidskriftsartikel (refereegranskat)abstract
    • HLA-DQA1 and -DQB1 are strongly associated with type 1 diabetes (T1D), and DQ8.1 and DQ2.5 are major risk haplotypes. Next-generation targeted sequencing of HLA-DQA1 and -DQB1 in Swedish newly diagnosed 1- to 18 year-old patients (n= 962) and control subjects (n= 636) was used to construct abbreviated DQ haplotypes, converted into amino acid (AA) residues, and assessed for their associations with T1D. A hierarchically organized haplotype (HOH) association analysis allowed 45 unique DQ haplotypes to be categorized into seven clusters. The DQ8/9 cluster included two DQ8.1 risk and the DQ9 resistant haplotypes, and the DQ2 cluster included the DQ2.5 risk and DQ2.2 resistant haplotypes. Within each cluster, HOH found residues alpha 44Q (odds ratio [OR] 3.29,P= 2.38 * 10(-85)) and beta 57A (OR 3.44,P= 3.80 * 10(-84)) to be associated with T1D in the DQ8/9 cluster representing all ten residues (alpha 22, alpha 23, alpha 44, alpha 49, alpha 51, alpha 53, alpha 54, alpha 73, alpha 184, beta 57) due to complete linkage disequilibrium (LD) of alpha 44 with eight such residues. Within the DQ2 cluster and due to LD, HOH analysis found alpha 44C and beta 135D to share the risk for T1D (OR 2.10,P= 1.96 * 10(-20)). The motif "QAD" of alpha 44, beta 57, and beta 135 captured the T1D risk association of DQ8.1 (OR 3.44,P= 3.80 * 10(-84)), and the corresponding motif "CAD" captured the risk association of DQ2.5 (OR 2.10,P= 1.96 * 10(-20)). Two risk associations were related to GAD65 autoantibody (GADA) and IA-2 autoantibody (IA-2A) but in opposite directions. CAD was positively associated with GADA (OR 1.56,P= 6.35 * 10(-8)) but negatively with IA-2A (OR 0.59,P= 6.55 * 10(-11)). QAD was negatively associated with GADA (OR 0.88;P= 3.70 * 10(-3)) but positively with IA-2A (OR 1.64;P= 2.40 * 10(-14)), despite a single difference at alpha 44. The residues are found in and around anchor pockets 1 and 9, as potential T-cell receptor contacts, in the areas for CD4 binding and putative homodimer formation. The identification of three HLA-DQ AAs (alpha 44, beta 57, beta 135) conferring T1D risk should sharpen functional and translational studies.
  •  
7.
  • Zhao, Lue Ping, et al. (författare)
  • Motifs of Three HLA-DQ Amino Acid Residues (α44, β57, β135) Capture Full Association With the Risk of Type 1 Diabetes in DQ2 and DQ8 Children
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:7, s. 1573-1587
  • Tidskriftsartikel (refereegranskat)abstract
    • HLA-DQA1 and -DQB1 are strongly associated with type 1 diabetes (T1D), and DQ8.1 and DQ2.5 are major risk haplotypes. Next-generation targeted sequencing of HLA-DQA1 and -DQB1 in Swedish newly diagnosed 1- to 18 year-old patients (n = 962) and control subjects (n = 636) was used to construct abbreviated DQ haplotypes, converted into amino acid (AA) residues, and assessed for their associations with T1D. A hierarchically organized haplotype (HOH) association analysis allowed 45 unique DQ haplotypes to be categorized into seven clusters. The DQ8/9 cluster included two DQ8.1 risk and the DQ9 resistant haplotypes, and the DQ2 cluster included the DQ2.5 risk and DQ2.2 resistant haplotypes. Within each cluster, HOH found residues α44Q (odds ratio [OR] 3.29, P = 2.38 * 10-85) and β57A (OR 3.44, P = 3.80 * 10-84) to be associated with T1D in the DQ8/9 cluster representing all ten residues (α22, α23, α44, α49, α51, α53, α54, α73, α184, β57) due to complete linkage disequilibrium (LD) of α44 with eight such residues. Within the DQ2 cluster and due to LD, HOH analysis found α44C and β135D to share the risk for T1D (OR 2.10, P = 1.96 * 10-20). The motif "QAD" of α44, β57, and β135 captured the T1D risk association of DQ8.1 (OR 3.44, P = 3.80 * 10-84), and the corresponding motif "CAD" captured the risk association of DQ2.5 (OR 2.10, P = 1.96 * 10-20). Two risk associations were related to GAD65 autoantibody (GADA) and IA-2 autoantibody (IA-2A) but in opposite directions. CAD was positively associated with GADA (OR 1.56, P = 6.35 * 10-8) but negatively with IA-2A (OR 0.59, P = 6.55 * 10-11). QAD was negatively associated with GADA (OR 0.88; P = 3.70 * 10-3) but positively with IA-2A (OR 1.64; P = 2.40 * 10-14), despite a single difference at α44. The residues are found in and around anchor pockets 1 and 9, as potential T-cell receptor contacts, in the areas for CD4 binding and putative homodimer formation. The identification of three HLA-DQ AAs (α44, β57, β135) conferring T1D risk should sharpen functional and translational studies.
  •  
8.
  • Zhao, Lue Ping, et al. (författare)
  • Next-Generation HLA Sequence Analysis Uncovers Seven HLA-DQ Amino Acid Residues and Six Motifs Resistant to Childhood Type 1 Diabetes
  • 2020
  • Ingår i: Diabetes. - Arlington, VA, United States : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 69:11, s. 2523-2535
  • Tidskriftsartikel (refereegranskat)abstract
    • HLA-DQA1 and -DQB1 genes have significant and potentially causal associations with autoimmune type 1 diabetes (T1D). To follow up on the earlier analysis on high-risk HLA-DQ2.5 and DQ8.1, the current analysis uncovers seven residues (alpha a1, alpha 157, alpha 196, beta 9, beta 30, beta 57, and beta 70) that are resistant to T1D among subjects with DQ4-, 5-, 6-, and7-resistant DQ haplotypes. These 7 residues form 13 common motifs: 6 motifs are significantly resistant, 6 motifs have modest or no associations (Pvalues >0.05), and 1 motif has 7 copies observed among control subjects only. The motifs "DAAFYDG," "DAAYHDG," and "DAAYYDR" have significant resistance to T1D (odds ratios [ORs] 0.03, 0.25, and 0.18;P= 6.11 x 10(-24), 3.54 x 10(-15), and 1.03 x 10(-21), respectively). Remarkably, a change of a single residue from the motif "DAAYHDG" to "DAAYHSG" (D to S at beta 57) alters the resistance potential, from resistant motif (OR 0.15;P= 3.54 x 10(-15)) to a neutral motif (P= 0.183), the change of which was significant (FisherPvalue = 0.0065). The extended set of linked residues associated with T1D resistance and unique to each cluster of HLA-DQ haplotypes represents facets of all known features and functions of these molecules: antigenic peptide binding, peptide-MHC class II complex stability, beta 167-169 RGD loop, T-cell receptor binding, formation of homodimer of alpha-beta heterodimers, and cholesterol binding in the cell membrane rafts. Identification of these residues is a novel understanding of resistant DQ associations with T1D. Our analyses endow potential molecular approaches to identify immunological mechanisms that control disease susceptibility or resistance to provide novel targets for immunotherapeutic strategies.
  •  
9.
  • Zhao, Lue Ping, et al. (författare)
  • Nine residues in HLA-DQ molecules determine with susceptibility and resistance to type 1 diabetes among young children in Sweden
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • HLA-DQ molecules account over 50% genetic risk of type 1 diabetes (T1D), but little is known about associated residues. Through next generation targeted sequencing technology and deep learning of DQ residue sequences, the aim was to uncover critical residues and their motifs associated with T1D. Our analysis uncovered (αa1, α44, α157, α196) and (β9, β30, β57, β70, β135) on the HLA-DQ molecule. Their motifs captured all known susceptibility and resistant T1D associations. Three motifs, "DCAA-YSARD" (OR = 2.10, p = 1.96*10-20), "DQAA-YYARD" (OR = 3.34, 2.69*10-72) and "DQDA-YYARD" (OR = 3.71, 1.53*10-6) corresponding to DQ2.5 and DQ8.1 (the latter two motifs) associated with susceptibility. Ten motifs were significantly associated with resistance to T1D. Collectively, homozygous DQ risk motifs accounted for 43% of DQ-T1D risk, while homozygous DQ resistant motifs accounted for 25% protection to DQ-T1D risk. Of the identified nine residues five were within or near anchoring pockets of the antigenic peptide (α44, β9, β30, β57 and β70), one was the N-terminal of the alpha chain (αa1), one in the CD4-binding region (β135), one in the putative cognate TCR-induced αβ homodimerization process (α157), and one in the intra-membrane domain of the alpha chain (α196). Finding these critical residues should allow investigations of fundamental properties of host immunity that underlie tolerance to self and organ-specific autoimmunity.
  •  
10.
  • Zhao, Lue Ping, et al. (författare)
  • Oral Insulin Delay of Stage 3 Type 1 Diabetes Revisited in HLA DR4-DQ8 Participants in the TrialNet Oral Insulin Prevention Trial (TN07)
  • Ingår i: Diabetes Care. - 1935-5548. ; , s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To explore if oral insulin could delay onset of stage 3 type 1 diabetes (T1D) among patients with stage 1/2 who carry HLA DR4-DQ8 and/or have elevated levels of IA-2 autoantibodies (IA-2As).RESEARCH AND METHODS: Next-generation targeted sequencing technology was used to genotype eight HLA class II genes (DQA1, DQB1, DRB1, DRB3, DRB4, DRB5, DPA1, and DPB1) in 546 participants in the TrialNet oral insulin preventative trial (TN07). Baseline levels of autoantibodies against insulin (IAA), GAD65 (GADA), and IA-2A were determined prior to treatment assignment. Available clinical and demographic covariables from TN07 were used in this post hoc analysis with the Cox regression model to quantify the preventive efficacy of oral insulin.RESULTS: Oral insulin reduced the frequency of T1D onset among participants with elevated IA-2A levels (HR 0.62; P = 0.012) but had no preventive effect among those with low IA-2A levels (HR 1.03; P = 0.91). High IA-2A levels were positively associated with the HLA DR4-DQ8 haplotype (OR 1.63; P = 6.37 × 10-6) and negatively associated with the HLA DR7-containing DRB1*07:01-DRB4*01:01-DQA1*02:01-DQB1*02:02 extended haplotype (OR 0.49; P = 0.037). Among DR4-DQ8 carriers, oral insulin delayed the progression toward stage 3 T1D onset (HR 0.59; P = 0.027), especially if participants also had high IA-2A level (HR 0.50; P = 0.028).CONCLUSIONS: These results suggest the presence of a T1D endotype characterized by HLA DR4-DQ8 and/or elevated IA-2A levels; for those patients with stage 1/2 disease with such an endotype, oral insulin delays the clinical T1D onset.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy