SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Shihuai) "

Sökning: WFRF:(Wang Shihuai)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdellah, Mohamed, et al. (författare)
  • Competitive Hole Transfer from CdSe Quantum Dots to Thiol Ligands in CdSe-Cobaloxime Sensitized NiO Films Used as Photocathodes for H-2 Evolution
  • 2017
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 2:11, s. 2576-2580
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum dot (QD) sensitized NiO photocathodes rely on efficient photoinduced hole injection into the NiO valence band. A system of a mesoporous NiO film co-sensitized with CdSe QDs and a molecular proton reduction catalyst was studied. While successful electron transfer from the excited QDs to the catalyst is observed, most of the photogenerated holes are instead quenched very rapidly (ps) by hole trapping at the surface thiols of the capping agent used as linker molecules. We confirmed our conclusion by first using a thiol free capping agent and second varying the thiol concentration on the QD's surface. The later resulted in faster hole trapping as the thiol concentration increased. We suggest that this hole trapping by the linker limits the H-2 yield for this photocathode in a device.
  •  
2.
  • Aster, Alexander, et al. (författare)
  • Metal vs. ligand protonation and the alleged proton-shuttling role of the azadithiolate ligand in catalytic H-2 formation with FeFe hydrogenase model complexes
  • 2019
  • Ingår i: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 10:21, s. 5582-5588
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron and proton transfer reactions of diiron complexes [Fe(2)adt(CO)(6)] (1) and [Fe(2)adt(CO)(4)(PMe3)(2)] (4), with the biomimetic azadithiolate (adt) bridging ligand, have been investigated by real-time IR- and UV-vis-spectroscopic observation to elucidate the role of the adt-N as a potential proton shuttle in catalytic H-2 formation. Protonation of the one-electron reduced complex, 1(-), occurs on the adt-N yielding 1H and the same species is obtained by one-electron reduction of 1H(+). The preference for ligand vs. metal protonation in the Fe-2(i,0) state is presumably kinetic but no evidence for tautomerization of 1H to the hydride 1Hy was observed. This shows that the adt ligand does not work as a proton relay in the formation of hydride intermediates in the reduced catalyst. A hydride intermediate 1HHy(+) is formed only by protonation of 1H with stronger acid. Adt protonation results in reduction of the catalyst at much less negative potential, but subsequent protonation of the metal centers is not slowed down, as would be expected according to the decrease in basicity. Thus, the adtH(+) complex retains a high turnover frequency at the lowered overpotential. Instead of proton shuttling, we propose that this gain in catalytic performance compared to the propyldithiolate analogue might be rationalized in terms of lower reorganization energy for hydride formation with bulk acid upon adt protonation.
  •  
3.
  • Chen, Song, et al. (författare)
  • Eu3+ doped monetite and its use as fluorescent agent for dental restorations
  • 2018
  • Ingår i: Ceramics International. - : Saunders Elsevier. - 0272-8842 .- 1873-3956. ; 44:9, s. 10510-10516
  • Tidskriftsartikel (refereegranskat)abstract
    • It is essential but challenging to distinguish the dental restorations from the surrounding teeth when removing filling materials from cavity. In this study, Eu3+ doped monetite was proposed as a fluorescent agent for dental restorations to meet this challenge. Eu3+ doped monetite with enhanced fluorescent property was obtained via a precipitation method. The presence of Eu3+ could prevent the phase transformation of brushite to monetite. However, all the brushite particles transformed to monetite at 300 °C and to tricalcium phosphate at 800 °C. The emission intensity increased with the addition of Eu3+ and reached the maximum when 12 mol% Eu3+ was added into the aqueous solution. With either 254 nm or 393 nm excitation, Eu3+ doped monetite showed the strongest fluorescence emission peaking at 616 nm and other two moderate bands peaking at 699 nm and 593 nm. The excitation spectra at the emission wavelength of 616 nm showed strong absorption peaks at 254 nm and 393 nm. We further investigate the fluorescence properties of Eu3+ doped monetite in one type of dental restorations. Glass ionomer cement with Eu3+ doped monetite exhibited clear fluoresce with origin color under UV irradiation at 254 nm, showing that Eu3+doped monetite is a promising fluorescent agent for dental restorations.
  •  
4.
  • Hao, Yan, et al. (författare)
  • Efficient Dye-Sensitized Solar Cells with Voltages Exceeding 1 V through Exploring Tris(4-alkoxyphenyl)amine Mediators in Combination with the Tris(bipyridine) Cobalt Redox System
  • 2018
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 3:8, s. 1929-1937
  • Tidskriftsartikel (refereegranskat)abstract
    • Tandem redox electrolytes, prepared by the addition of a tris(p-anisyl)amine mediator into classic tris(bipyridine)cobalt-based electrolytes, demonstrate favorable electron transfer and reduced energy loss in dye-sensitized solar cells. Here, we have successfully explored three tris(4-alkoxyphenyl)-amine mediators with bulky molecular structures and generated more effective tandem redox systems. This series of tandem redox electrolytes rendered solar cells with very high photovoltages exceeding 1 V, which approaches the theoretical voltage limit of tris(bipyridine)cobalt-based electrolytes. Solar cells with power conversion efficiencies of 9.7-11.0% under 1 sun illumination were manufactured. This corresponds to an efficiency improvement of up to 50% as compared to solar cells based on pure tris(bipyridine)cobalt-based electrolytes. The photovoltage increases with increasing steric effects of the tris(4-alkoxyphenyl)amine mediators, which is attributed to a retarded recombination kinetics. These results highlight the importance of structural design for optimized charge transfer at the sensitized semiconductor/electrolyte interface and provide insights for the future development of efficient dye-sensitized solar cells.
  •  
5.
  • Liu, Tianfei, et al. (författare)
  • Elucidating Proton-Coupled Electron Transfer Mechanisms of Metal Hydrides with Free Energy- and Pressure-Dependent Kinetics
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 141:43, s. 17245-17259
  • Tidskriftsartikel (refereegranskat)abstract
    • Proton-coupled electron transfer (PCET) was studied in a series of tungsten hydride complexes with pendant pyridyl arms ([(PyCH2Cp)WH(CO)(3)], PyCH2Cp = pyridyl methyl cyclopentadienyl), triggered by laser flash-generated Ru-III-tris-bipyridine oxidants, in acetonitrile solution. The free energy dependence of the rate constant and the kinetic isotope effects (KIEs) showed that the PCET mechanism could be switched between concerted and the two stepwise PCET mechanisms (electron-first or proton-first) in a predictable fashion. Straightforward and general guidelines for how the relative rates of the different mechanisms depend on oxidant and base are presented. The rate of the concerted reaction should depend symmetrically on changes in oxidant and base strength, that is on the overall Delta G(PCET)(0), and we argue that an "asynchronous" behavior would not be consistent with a model where the electron and proton tunnel from a common transition state. The observed rate constants and KIEs were examined as a function of hydrostatic pressure (1-2000 bar) and were found to exhibit qualitatively different dependence on pressure for different PCET mechanisms. This is discussed in terms of different volume profiles of the PCET mechanisms as well as enhanced proton tunneling for the concerted mechanism. The results allowed for assignment of the main mechanism operating in the different cases, which is one of the critical questions in PCET research. They also show how the rate of a PCET reaction will be affected very differently by changes of oxidant and base strength, depending on which mechanism dominates. This is of fundamental interest as well as of practical importance for rational design of, for example, catalysts for fuel cells and solar fuel formation, which operate in steps of PCET reactions. The mechanistic richness shown by this system illustrates that the specific mechanism is not intrinsic to a specific synthetic catalyst or enzyme active site but depends on the reaction conditions.
  •  
6.
  • Lomoth, Reiner, et al. (författare)
  • Probing the elementary steps of PCET catalysis
  • 2018
  • Ingår i: Abstracts of Papers of the American Chemical Society. - Washington, D.C. : American Chemical Society (ACS). - 0065-7727. ; 255
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
7.
  • Wang, Shihuai, et al. (författare)
  • Direct Spectroscopic Detection of Key Intermediates and Turnover Process in Catalytic H2 Formation by a Biomimetic Diiron Catalyst
  • 2019
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 25:47, s. 11135-11140
  • Tidskriftsartikel (refereegranskat)abstract
    • [FeFe(Cl-2-bdt)(CO)(6)] (1; Cl-2-bdt=3,6-dichlorobenzene-1,2-dithiolate), inspired by the active site of FeFe-hydrogenase, shows a chemically reversible 2 e(-) reduction at -1.20 V versus the ferrocene/ferrocenium couple. The rigid and aromatic bdt bridging ligand lowers the reduction potential and stabilizes the reduced forms, compared with analogous complexes with aliphatic dithiolates; thus allowing details of the catalytic process to be characterized. Herein, time-resolved IR spectroscopy is used to provide kinetic and structural information on key catalytic intermediates. This includes the doubly reduced, protonated complex 1H(-), which has not been previously identified experimentally. In addition, the first direct spectroscopic observation of the turnover process for a molecular H-2 evolving catalyst is reported, allowing for straightforward determination of the turnover frequency.
  •  
8.
  •  
9.
  • Wang, Shihuai (författare)
  • Probing Catalytic Reaction Mechanisms of Biomimetic Diiron Complexes through Time-resolved Absorption Spectroscopy
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Directed design of improved molecular catalysts for hydrogen evolution reactions relies on rational benchmarking based on a detailed understanding about the mechanism of catalysis. Specifically, investigation of multi-electron redox catalysis, with structural characterization of catalytic intermediates, combined with the kinetics of their transformations, can reveal the rate-limiting step of the overall reaction, possible degradation pathways and the function of structural motives. However, direct spectroscopic observation of catalytic intermediates is in most cases not available due to the rapid turnover of efficient catalysts.In this thesis, time-resolved absorption spectroscopy with UV-Vis and mid-IR detection was used to identify catalytic reaction intermediates and account for kinetics relevant to elementary reactions steps of H2 formation on a nanosecond to second time scale. For a class of FeIFeI (S-R-S)(CO)6-n(PMe3)n complexes (R = propyl, benzyl or azapropyl), inspired by the active site of FeFe-hydrogenase, the key intermediates formed in different catalytic pathways have been characterized. These complexes typically feature very similar coordination geometry, but show different structural rearrangements upon reduction. This could be applied to rationalize their differences in protonation dynamics. Protonation kinetics of singly reduced species, forming a bridging hydride, indicate a direct proton transfer step in the FeIFe0 state, in contrast to that of the neutral complex (FeIFeI state) with phosphine ligands (PMe3) in which the hydride formation is likely mediated by one of the CO-ligands, as had been proposed. In catalysis of FeFe-hydrogenase, the amine function of the bridgehead is known to assist enzymatic H2 formation by proton shuttling. The same role in catalysis by the synthetic diiron complex with the azapropyl bridgehead had been proposed. However, our results show that for the synthetic complex, the aza-group has no role as a proton shuttle in the hydride formation in the FeIFe0 state. Instead, the effect of nitrogen protonation is to lower the catalyst overpotential, without substantially slowing down the hydride formation with external protons. The amine acting as a proton shuttle in the hydride formation could be expected in the Fe0Fe0 level. However, slower second reduction of FeIFeI (S-azapropyl-S)(CO)6 complex impedes observation of the doubly reduced species under the catalytic conditions. For the benzyldithiolate complex, on the other hand, the rigid and unsaturated bridging ligand generally leads to less negative potentials and prevent the reduced forms from rapid degradation. This allows characterization of the later intermediates of the catalytic processes, and to obtain direct kinetic information on the turnover step.  
  •  
10.
  • Wang, Shihuai, et al. (författare)
  • Spectroscopic Detection of Key Intermediates and Turnover Process in Catalytic H2 Formation by a Biomimetic Diiron Catalyst
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • FeFe(Cl2-bdt)(CO)2 (1) (Cl2-bdt = dichlorobenzene-1,2-dthiolate), inspired by the active site of FeFe-hydrogenase, shows achemically reversible 2e- reduction at -1.20 V VS. Fc+/Fc. From thiscompound, the rigid and unsaturated bdt-bridging ligand lowers thereduction potential and stabilizes the reduced forms, allowing us tocharacterize the overall catalytic process. Herein, we provide theexact structural information on the key catalytic intermediates such as1H- that is not identified experimentally. In addition, we first report thespectroscopic evidence of turnover process of H2 formation catalysedby complex 1, and provide the straightforward determination ofturnover frequency (TOF).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy