SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang X. Renshaw) "

Sökning: WFRF:(Wang X. Renshaw)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Han, Kun, et al. (författare)
  • Enhanced Metal-Insulator Transition in Freestanding VO2 Down to 5 nm Thickness
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:14, s. 16688-16693
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrathin freestanding membranes with a pronounced metal-insulator transition (MIT) have huge potential for future flexible electronic applications as well as provide a unique aspect for the study of lattice-electron interplay. However, the reduction of the thickness to an ultrathin region (a few nm) is typically detrimental to the MIT in epitaxial films, and even catastrophic for their freestanding form. Here, we report an enhanced MIT in VO2-based freestanding membranes, with a lateral size up to millimeters and the VO2 thickness down to 5 nm. The VO2 membranes were detached by dissolving a Sr3Al2O6 sacrificial layer between the VO2 thin film and the c-Al2O3(0001) substrate, allowing the transfer onto arbitrary surfaces. Furthermore, the MIT in the VO2 membrane was greatly enhanced by inserting an intermediate Al2O3 buffer layer. In comparison with the best available ultrathin VO2 membranes, the enhancement of MIT is over 400% at a 5 nm VO2 thickness and more than 1 order of magnitude for VO2 above 10 nm. Our study widens the spectrum of functionality in ultrathin and large-scale membranes and enables the potential integration of MIT into flexible electronics and photonics.
  •  
2.
  • Huang, Ke, et al. (författare)
  • Tailoring magnetic order via atomically stacking 3d/5d electrons to achieve high-performance spintronic devices
  • 2020
  • Ingår i: Applied Physics Reviews. - : AMER INST PHYSICS. - 1931-9401. ; 7:1
  • Forskningsöversikt (refereegranskat)abstract
    • The ability to tune magnetic orders, such as magnetic anisotropy and topological spin texture, is desired to achieve high-performance spintronic devices. A recent strategy has been to employ interfacial engineering techniques, such as the introduction of spin-correlated interfacial coupling, to tailor magnetic orders and achieve novel magnetic properties. We chose a unique polar-nonpolar LaMnO3/SrIrO3 superlattice because Mn (3d)/Ir (5d) oxides exhibit rich magnetic behaviors and strong spin-orbit coupling through the entanglement of their 3d and 5d electrons. Through magnetization and magnetotransport measurements, we found that the magnetic order is interface-dominated as the superlattice period is decreased. We were able to then effectively modify the magnetization, tilt of the ferromagnetic easy axis, and symmetry transition of the anisotropic magnetoresistance of the LaMnO3/SrIrO3 superlattice by introducing additional Mn (3d) and Ir (5d) interfaces. Further investigations using in-depth first-principles calculations and numerical simulations revealed that these magnetic behaviors could be understood by the 3d/5d electron correlation and Rashba spin-orbit coupling. The results reported here demonstrate a new route to synchronously engineer magnetic properties through the atomic stacking of different electrons, which would contribute to future applications in high-capacity storage devices and advanced computing.
  •  
3.
  • Abe, K., et al. (författare)
  • Neutron tagging following atmospheric neutrino events in a water Cherenkov detector
  • 2022
  • Ingår i: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 +/- 9 mu s.
  •  
4.
  • Al Kharusi, S., et al. (författare)
  • SNEWS 2.0 : a next-generation supernova early warning system for multi-messenger astronomy
  • 2021
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:3
  • Forskningsöversikt (refereegranskat)abstract
    • The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors with significant backgrounds so they can store their recent data. The supernova early warning system (SNEWS) has been operating as a simple coincidence between neutrino experiments in automated mode since 2005. In the current era of multi-messenger astronomy there are new opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova beyond the simple early alert. This document is the product of a workshop in June 2019 towards design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique advantages of prompt neutrino detection to maximize the science gained from such a valuable event.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy