SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Yanfeng) "

Sökning: WFRF:(Wang Yanfeng)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Miao, Yanfeng, et al. (författare)
  • Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Solution-processable perovskites show highly emissive and good charge transport, making them attractive for low-cost light-emitting diodes (LEDs) with high energy conversion efficiencies. Despite recent advances in device efficiency, the stability of perovskite LEDs is still a major obstacle. Here, we demonstrate stable and bright perovskite LEDs with high energy conversion efficiencies by optimizing formamidinium lead iodide films. Our LEDs show an energy conversion efficiency of 10.7%, and an external quantum efficiency of 14.2% without outcoupling enhancement through controlling the concentration of the precursor solutions. The device shows low efficiency droop, i.e. 8.3% energy conversion efficiency and 14.0% external quantum efficiency at a current density of 300 mA cm(-2), making the device more efficient than state-of-the-art organic and quantum-dot LEDs at high current densities. Furthermore, the half-lifetime of device with benzylamine treatment is 23.7 hr under a current density of 100 mA cm(-2), comparable to the lifetime of near-infrared organic LEDs.
  •  
2.
  • Yang, Rong, et al. (författare)
  • Inhomogeneous degradation in metal halide perovskites
  • 2017
  • Ingår i: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 111:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the rapid development of organic-inorganic metal halide perovskite solar cells has led to certified power conversion efficiencies of above 20%, their poor stability remains a major challenge, preventing their practical commercialization. In this paper, we investigate the intrinsic origin of the poor stability in perovskite solar cells by using a confocal fluorescence microscope. We find that the degradation of perovskite films starts from grain boundaries and gradually extend to the center of the grains. Firmly based on our findings, we further demonstrate that the device stability can be significantly enhanced by increasing the grain size of perovskite crystals. Our results have important implications to further enhance the stability of optoelectronic devices based on metal halide perovskites. Published by AIP Publishing.
  •  
3.
  • Yang, Rong, et al. (författare)
  • Oriented Quasi-2D Perovskites for High Performance Optoelectronic Devices
  • 2018
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 30:51
  • Tidskriftsartikel (refereegranskat)abstract
    • Quasi-2D layered organometal halide perovskites have recently emerged as promising candidates for solar cells, because of their intrinsic stability compared to 3D analogs. However, relatively low power conversion efficiency (PCE) limits the application of 2D layered perovskites in photovoltaics, due to large energy band gap, high exciton binding energy, and poor interlayer charge transport. Here, efficient and water-stable quasi-2D perovskite solar cells with a peak PCE of 18.20% by using 3-bromobenzylammonium iodide are demonstrated. The unencapsulated devices sustain over 82% of their initial efficiency after 2400 h under relative humidity of approximate to 40%, and show almost unchanged photovoltaic parameters after immersion into water for 60 s. The robust performance of perovskite solar cells results from the quasi-2D perovskite films with hydrophobic nature and a high degree of electronic order and high crystallinity, which consists of both ordered large-bandgap perovskites with the vertical growth in the bottom region and oriented small-bandgap components in the top region. Moreover, due to the suppressed nonradiative recombination, the unencapsulated photovoltaic devices can work well as light-emitting diodes (LEDs), exhibiting an external quantum efficiency of 3.85% and a long operational lifetime of approximate to 96 h at a high current density of 200 mA cm(-2) in air.
  •  
4.
  • Chen, Haoran, et al. (författare)
  • Decoupling engineering of formamidinium-cesium perovskites for efficient photovoltaics
  • 2022
  • Ingår i: National Science Review. - : Oxford University Press. - 2095-5138 .- 2053-714X. ; 9:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Sequential Cs incorporation strategy is developed to decouple crystallization of FACs perovskite with reduced electron-phonon coupling, resulting in highly stable FACs tri-iodide perovskite photovoltaics with record efficiency. Although pure formamidinium iodide perovskite (FAPbI(3)) possesses an optimal gap for photovoltaics, their poor phase stability limits the long-term operational stability of the devices. A promising approach to enhance their phase stability is to incorporate cesium into FAPbI(3). However, state-of-the-art formamidinium-cesium (FA-Cs) iodide perovskites demonstrate much worse efficiency compared with FAPbI(3), limited by the different crystallization dynamics of formamidinium and cesium, which result in poor composition homogeneity and high trap densities. We develop a novel strategy of crystallization decoupling processes of formamidinium and cesium via a sequential cesium incorporation approach. As such, we obtain highly reproducible, highly efficient and stable solar cells based on FA(1)(-)(x)Cs(x)PbI(3) (x = 0.05-0.16) films with uniform composition distribution in the nanoscale and low defect densities. We also revealed a new stabilization mechanism for Cs doping to stabilize FAPbI(3), i.e. the incorporation of Cs into FAPbI(3) significantly reduces the electron-phonon coupling strength to suppress ionic migration, thereby improving the stability of FA-Cs-based devices.
  •  
5.
  • Nie, Shisong, et al. (författare)
  • High Conductivity, Semiconducting, and Metallic PEDOT:PSS Electrode for All-Plastic Solar Cells
  • 2023
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 28:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastic electrodes are desirable for the rapid development of flexible organic electronics. In this article, a plastic electrode has been prepared by employing traditional conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and plastic substrate polyethersulfone (PES). The completed electrode (Denote as HC-PEDOT:PSS) treated by 80% concentrated sulfuric acid (H2SO4) possesses a high electrical conductivity of over 2673 S/cm and a high transmittance of over 90% at 550 nm. The high conductivity is attributed to the regular arrangement of PEDOT molecules, which has been proved by the X-ray diffraction characterization. Temperature-dependent conductivity measurement reveals that the HC-PEDOT:PSS possesses both semiconducting and metallic properties. The binding force and effects between the PEDOT and PEI are investigated in detail. All plastic solar cells with a classical device structure of PES/HC-PEDOT:PSS/PEI/P3HT:ICBA/EG-PEDOT:PSS show a PCE of 4.05%. The ITO-free device with a structure of Glass/HC-PEDOT:PSS/Al4083/PM6:Y6/PDINO/Ag delivers an open-circuit voltage (V-OC) of 0.81 V, short-circuit current (J(SC) ) of 23.5 mA/cm(2), fill factor (FF) of 0.67 and a moderate power conversion efficiency (PCE) of 12.8%. The above results demonstrate the HC-PEDOT:PSS electrode is a promising candidate for all-plastic solar cells and ITO-free organic solar cells.
  •  
6.
  • Wang, Nana, et al. (författare)
  • Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells
  • 2016
  • Ingår i: Nature Photonics. - : NATURE PUBLISHING GROUP. - 1749-4885 .- 1749-4893. ; 10:11, s. 699-
  • Tidskriftsartikel (refereegranskat)abstract
    • Organometal halide perovskites can be processed from solutions at low temperatures to form crystalline direct-bandgap semiconductors with promising optoelectronic properties(1-5). However, the efficiency of their electroluminescence is limited by non-radiative recombination, which is associated with defects and leakage current due to incomplete surface coverage(6-9). Here we demonstrate a solution-processed perovskite light-emitting diode (LED) based on self-organized multiple quantum wells (MQWs) with excellent film morphologies. The MQW-based LED exhibits a very high external quantum efficiency of up to 11.7%, good stability and exceptional highpower performance with an energy conversion efficiency of 5.5% at a current density of 100 mA cm(-2). This outstanding performance arises because the lower bandgap regions that generate electroluminescence are effectively confined by perovskite MQWs with higher energy gaps, resulting in very efficient radiative decay. Surprisingly, there is no evidence that the large interfacial areas between different bandgap regions cause luminescence quenching.
  •  
7.
  • Xu, Weidong, 1988-, et al. (författare)
  • Rational molecular passivation for high-performance perovskite light-emitting diodes
  • 2019
  • Ingår i: Nature Photonics. - : Springer Nature Publishing AG. - 1749-4885 .- 1749-4893. ; 13:6, s. 418-424
  • Tidskriftsartikel (refereegranskat)abstract
    • A major efficiency limit for solution-processed perovskite optoelectronic devices, for example light-emitting diodes, is trap-mediated non-radiative losses. Defect passivation using organic molecules has been identified as an attractive approach to tackle this issue. However, implementation of this approach has been hindered by a lack of deep understanding of how the molecular structures influence the effectiveness of passivation. We show that the so far largely ignored hydrogen bonds play a critical role in affecting the passivation. By weakening the hydrogen bonding between the passivating functional moieties and the organic cation featuring in the perovskite, we significantly enhance the interaction with defect sites and minimize non-radiative recombination losses. Consequently, we achieve exceptionally high-performance near-infrared perovskite light-emitting diodes with a record external quantum efficiency of 21.6%. In addition, our passivated perovskite light-emitting diodes maintain a high external quantum efficiency of 20.1% and a wall-plug efficiency of 11.0% at a high current density of 200 mA cm−2, making them more attractive than the most efficient organic and quantum-dot light-emitting diodes at high excitations.
  •  
8.
  • Zhang, Liangdong, et al. (författare)
  • Bright Free Exciton Electroluminescence from Mn-Doped Two-Dimensional Layered Perovskites
  • 2019
  • Ingår i: Journal of Physical Chemistry Letters. - : AMER CHEMICAL SOC. - 1948-7185 .- 1948-7185. ; 10:11, s. 3171-3175
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) perovskites incorporating hydrophobic organic spacer cations show improved film stability and morphology compared to their three-dimensional (3D) counterparts. However, 2D perovskites usually exhibit low photoluminescence quantum efficiency (PLQE) owing to strong exciton-phonon interaction at room temperature, which limits their efficiency in light-emitting diodes (LEDs). Here, we demonstrate that the device performance of 2D perovskite LEDs can be significantly enhanced by doping Mn(2+)in (benzimidazolium)(2)PbI4 2D perovskite films to suppress the exciton-phonon interaction. The distorted [PbI6](4-) octahedra by Mn-doping and the rigid benzimidazolium (BIZ) ring without branched chains in the 2D perovskite structure lead to improved crystallinity and rigidity of the perovskites, resulting in suppressed phonon-exciton interaction and enhanced PLQE. On the basis of this strategy, for the first time, we report yellow electroluminescence from free excitons in 2D (n = 1) perovskites with a maximum brightness of 225 cd m(-2) and a peak EQE of 0.045%.
  •  
9.
  • Zou, Wei, et al. (författare)
  • Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficiency roll-off is a major issue for most types of light-emitting diodes (LEDs), and its origins remain controversial. Here we present investigations of the efficiency roll-off in perovskite LEDs based on two-dimensional layered perovskites. By simultaneously measuring electroluminescence and photoluminescence on a working device, supported by transient photoluminescence decay measurements, we conclude that the efficiency roll-off in perovskite LEDs is mainly due to luminescence quenching which is likely caused by non-radiative Auger recombination. This detrimental effect can be suppressed by increasing the width of quantum wells, which can be easily realized in the layered perovskites by tuning the ratio of large and small organic cations in the precursor solution. This approach leads to the realization of a perovskite LED with a record external quantum efficiency of 12.7%, and the efficiency remains to be high, at approximately 10%, under a high current density of 500 mA cm(-2).
  •  
10.
  • Gennemark, Peter, et al. (författare)
  • An oral antisense oligonucleotide for PCSK9 inhibition
  • 2021
  • Ingår i: Science Translational Medicine. - : AMER ASSOC ADVANCEMENT SCIENCE. - 1946-6234 .- 1946-6242. ; 13:593
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) reduce low-density lipoprotein (LDL) cholesterol and are used for treatment of dyslipidemia. Current PCSK9 inhibitors are administered via subcutaneous injection. We present a highly potent, chemically modified PCSK9 antisense oligonucleotide (ASO) with potential for oral delivery. Past attempts at oral delivery using earlier-generation ASO chemistries and transient permeation enhancers provided encouraging data, suggesting that improving potency of the ASO could make oral delivery a reality. The constrained ethyl chemistry and liver targeting enabled by N-acetylgalactosamine conjugation make this ASO highly potent. A single subcutaneous dose of 90 mg reduced PCSK9 by >90% in humans with elevated LDL cholesterol and a monthly subcutaneous dose of around 25 mg is predicted to reduce PCSK9 by 80% at steady state. To investigate the feasibility of oral administration, the ASO was coformulated in a tablet with sodium caprate as permeation enhancer. Repeated oral daily dosing in dogs resulted in a bioavailability of 7% in the liver (target organ), about fivefold greater than the plasma bioavailability. Target engagement after oral administration was confirmed by intrajejunal administration of a rat-specific surrogate ASO in solution with the enhancer to rats and by plasma PCSK9 and LDL cholesterol lowering in cynomolgus monkey after tablet administration. On the basis of an assumption of 5% liver bioavailability after oral administration in humans, a daily dose of 15 mg is predicted to reduce circulating PCSK9 by 80% at steady state, supporting the development of the compound for oral administration to treat dyslipidemia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy