SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Yazhe) "

Sökning: WFRF:(Wang Yazhe)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yang, Hanmin, 1992-, et al. (författare)
  • Distributed electrified heating for efficient hydrogen production
  • 2024
  • Ingår i: Nature Communications. - : Nature Research. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This study introduces a distributed electrified heating approach that is able to innovate chemical engineering involving endothermic reactions. It enables rapid and uniform heating of gaseous reactants, facilitating efficient conversion and high product selectivity at specific equilibrium. Demonstrated in catalyst-free CH4 pyrolysis, this approach achieves stable production of H2 (530 g h−1 L reactor−1) and carbon nanotube/fibers through 100% conversion of high-throughput CH4 at 1150 °C, surpassing the results obtained from many complex metal catalysts and high-temperature technologies. Additionally, in catalytic CH4 dry reforming, the distributed electrified heating using metallic monolith with unmodified Ni/MgO catalyst washcoat showcased excellent CH4 and CO2 conversion rates, and syngas production capacity. This innovative heating approach eliminates the need for elongated reactor tubes and external furnaces, promising an energy-concentrated and ultra-compact reactor design significantly smaller than traditional industrial systems, marking a significant advance towards more sustainable and efficient chemical engineering society.
  •  
2.
  • Yang, Hanmin, 1992-, et al. (författare)
  • Distributed electrified heating for efficient hydrogen production
  • 2024
  • Ingår i: Nature Communications. - : Nature Research. - 2041-1723. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • This study introduces a distributed electrified heating approach that is able to innovate chemical engineering involving endothermic reactions. It enables rapid and uniform heating of gaseous reactants, facilitating efficient conversion and high product selectivity at specific equilibrium. Demonstrated in catalyst-free CH4 pyrolysis, this approach achieves stable production of H2 (530 g h−1 L reactor−1) and carbon nanotube/fibers through 100% conversion of high-throughput CH4 at 1150 °C, surpassing the results obtained from many complex metal catalysts and high-temperature technologies. Additionally, in catalytic CH4 dry reforming, the distributed electrified heating using metallic monolith with unmodified Ni/MgO catalyst washcoat showcased excellent CH4 and CO2 conversion rates, and syngas production capacity. This innovative heating approach eliminates the need for elongated reactor tubes and external furnaces, promising an energy-concentrated and ultra-compact reactor design significantly smaller than traditional industrial systems, marking a significant advance towards more sustainable and efficient chemical engineering society.
  •  
3.
  • Zhang, Lingling, et al. (författare)
  • Integrative analysis of γδT cells and dietary factors reveals predictive values for autism spectrum disorder in children
  • 2023
  • Ingår i: Brain, behavior, and immunity. - 0889-1591 .- 1090-2139. ; 111, s. 76-89
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Autism spectrum disorder (ASD) includes a range of multifactorial neurodevelopmental disabilities characterized by a variable set of neuropsychiatric symptoms. Immunological abnormalities have been considered to play important roles in the pathogenesis of ASD, but it is still unknown which abnormalities are more prominent. Methods: A total of 105 children with ASD and 105 age and gender-matched typically developing (TD) children were recruited. An eating and mealtime behavior questionnaire, dietary habits, and the Bristol Stool Scale were investigated. The immune cell profiles in peripheral blood were analyzed by flow cytometry, and cytokines (IFN-γ, IL-8, IL-10, IL-17A, and TNF-α) in plasma were examined by Luminex assay. The obtained results were further validated using an external validation cohort including 82 children with ASD and 51 TD children. Results: Compared to TD children, children with ASD had significant eating and mealtime behavioral changes and gastrointestinal symptoms characterized by increased food fussiness and emotional eating, decreased fruit and vegetable consumption, and increased stool astriction. The proportion of γδT cells was significantly higher in children with ASD than TD children (β: 0.156; 95% CI: 0.888 ∼ 2.135, p < 0.001) even after adjusting for gender, eating and mealtime behaviors, and dietary habits. In addition, the increased γδT cells were evident in all age groups (age < 48 months: β: 0.288; 95% CI: 0.420 ∼ 4.899, p = 0.020; age ≥ 48 months: β: 0.458; 95% CI: 0.694 ∼ 9.352, p = 0.024), as well as in boys (β: 0.174; 95% CI: 0.834 ∼ 2.625, p < 0.001) but not in girls. These findings were also confirmed by an external validation cohort. Furthermore, IL-17, but not IFN-γ, secretion by the circulating γδT cells was increased in ASD children. Machine learning revealed that the area under the curve in nomogram plots for increased γδT cells combined with eating behavior/dietary factors was 0.905, which held true in both boys and girls and in all the age groups of ASD children. The decision curves showed that children can receive significantly higher diagnostic benefit within the threshold probability range from 0 to 1.0 in the nomogram model. Conclusions: Children with ASD present with divergent eating and mealtime behaviors and dietary habits as well as gastrointestinal symptoms. In peripheral blood, γδT cells but not αβT cells are associated with ASD. The increased γδT cells combined with eating and mealtime behavior/dietary factors have a high value for assisting in the diagnosis of ASD.
  •  
4.
  • Yang, Hanmin, 1992-, et al. (författare)
  • Syngas production from biomass pyrolysis followed by in-line biochar-catalytic reforming : the effect of space velocity, particle size, and morphology
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • A syngas production based on a biomass pyrolysis followed by an in-line catalytic reforming process is a promising method to help curb greenhouse gas emissions. The use of biochar as the reforming catalyst is economically and technologically attractive. A continuous pyrolysis combined with an in-line biochar-catalytic reforming of the pyrolysis vapor was investigated in a comprehensive system consisting of an auger reactor and a downstream fixed-bed rector. The effect of the weight hourly space velocity (WHSV), particle size and morphology of biochar, and the pressure drop of the biochar bed on the catalytic performance were discussed. The results indicated that a higher syngas yield with a higher H2+CO proportion was obtained when using a lower WHSV, due to a longer residence time. The highest syngas and H2 yields were obtained when using biochar with the smallest particles sizes (0.6-1 mm), i.e. the highest bed pressure drops. The use of biochar particles, which are more spherical and rounded, resulted in higher syngas yields, H2 +CO proportions, and H2 yields due to the enhanced heat and mass transfer favored by the rounded shape. Up to 12 mmol H2/g-biomass was obtained, corresponding to a dry gas yield of 0.68 Nm3/kg , containing 39 vol. % H2 and 27 vol. % CO.  The use of biochar as a reforming catalyst showed a relatively stable catalytic performance after during a 100-minutes of running the experimentexperimental run-time.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy