SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Yidong) "

Sökning: WFRF:(Wang Yidong)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Qiang, et al. (författare)
  • Microbial Necromass, Lignin, and Glycoproteins for Determining and Optimizing Blue Carbon Formation
  • 2024
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 58, s. 468-479
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal wetlands contribute to the mitigation of climate change through the sequestration of “blue carbon”. Microbial necromass, lignin, and glycoproteins (i.e., glomalin-related soil proteins (GRSP)), as important components of soil organic carbon (SOC), are sensitive to environmental change. However, their contributions to blue carbon formation and the underlying factors remain largely unresolved. To address this paucity of knowledge, we investigated their contributions to blue carbon formation along a salinity gradient in coastal marshes. Our results revealed decreasing contributions of microbial necromass and lignin to blue carbon as the salinity increased, while GRSP showed an opposite trend. Using random forest models, we showed that their contributions to SOC were dependent on microbial biomass and resource stoichiometry. In N-limited saline soils, contributions of microbial necromass to SOC decreased due to increased N-acquisition enzyme activity. Decreases in lignin contributions were linked to reduced mineral protection offered by short-range-ordered Fe (FeSRO). Partial least-squares path modeling (PLS-PM) further indicated that GRSP could increase microbial necromass and lignin formation by enhancing mineral protection. Our findings have implications for improving the accumulation of refractory and mineral-bound organic matter in coastal wetlands, considering the current scenario of heightened nutrient discharge and sea-level rise.
  •  
2.
  • Xia, Shaopan, et al. (författare)
  • Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China
  • 2022
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 28:20, s. 6065-6085
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic carbon (SOC) in coastal wetlands, also known as "blue C," is an essential component of the global C cycles. To gain a detailed insight into blue C storage and controlling factors, we studied 142 sites across ca. 5000 km of coastal wetlands, covering temperate, subtropical, and tropical climates in China. The wetlands represented six vegetation types (Phragmites australis, mixed of P. australis and Suaeda, single Suaeda, Spartina alterniflora, mangrove [Kandelia obovata and Avicennia marina], tidal flat) and three vegetation types invaded by S. alterniflora (P. australis, K. obovata, A. marina). Our results revealed large spatial heterogeneity in SOC density of the top 1-m ranging 40-200 Mg C ha(-1), with higher values in mid-latitude regions (25-30 degrees N) compared with those in both low- (20 degrees N) and high-latitude (38-40 degrees N) regions. Vegetation type influenced SOC density, with P. australis and S. alterniflora having the largest SOC density, followed by mangrove, mixed P. australis and Suaeda, single Suaeda and tidal flat. SOC density increased by 6.25 Mg ha(-1) following S. alterniflora invasion into P. australis community but decreased by 28.56 and 8.17 Mg ha(-1) following invasion into K. obovata and A. marina communities. Based on field measurements and published literature, we calculated a total inventory of 57 x 10(6) Mg C in the top 1-m soil across China's coastal wetlands. Edaphic variables controlled SOC content, with soil chemical properties explaining the largest variance in SOC content. Climate did not control SOC content but had a strong interactive effect with edaphic variables. Plant biomass and quality traits were a minor contributor in regulating SOC content, highlighting the importance of quantity and quality of OC inputs and the balance between production and degradation within the coastal wetlands. These findings provide new insights into blue C stabilization mechanisms and sequestration capacity in coastal wetlands.
  •  
3.
  • Zou, Yidong, et al. (författare)
  • beta-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution : experimental and theoretical calculation study
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 4:37, s. 14170-14179
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel beta-cyclodextrin modified, multifunctional, layer-by-layer graphitic carbon nitride (g-C3N4/beta-CD) was successfully synthesized and applied as an effective adsorbent for the removal of methyl orange (MO) and Pb(II) from aqueous solutions under various environmental conditions (e.g., solution pH, solid content, contact time and temperature). The kinetic results indicated that the adsorption was dominated by chemisorption, and the higher adsorption capacity of g-C3N4/beta-CD was attributed to it having more oxygen-containing functional groups than g-C3N4. The Langmuir, Freundlich and Sips models were applied to simulate the adsorption isotherms of MO and Pb(II), and the results demonstrated that the adsorption of MO was attributed to multilayer adsorption, while the coverage adsorption of Pb(II) on the g-C3N4/beta-CD was monolayer adsorption. The thermodynamic parameters showed that the adsorption of both MO and Pb(II) was spontaneous and endothermic. The DFT calculations further evidenced the surface complexation and electrostatic interaction of Pb(II) on the g-C3N4 and g-C3N4/beta-CD, whereas, the interaction of MO with g-C3N4 and g-C3N4/beta-CD was mainly attributed to hydrogen bonds and strong pi-pi interactions. The results demonstrated that g-C3N4/beta-CD is a promising material for the efficient removal of organic and inorganic pollutants in environmental pollution remediation.
  •  
4.
  • Zou, Yidong, et al. (författare)
  • Glycerol-Modified Binary Layered Double Hydroxide Nanocomposites for Uranium Immobilization via Extended X-ray Absorption Fine Structure Technique and Density Functional Theory Calculation
  • 2017
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : AMER CHEMICAL SOC. - 2168-0485. ; 5:4, s. 3583-3595
  • Tidskriftsartikel (refereegranskat)abstract
    • Novel, efficient, glycerol-modified nanoscale layered double hydroxides (rods Ca/Al LDH-Gl and flocculent Ni/Al LDH-Gl) were successfully synthesized by a simple one-step hydrothermal synthesis route and showed excellent adsorption capacities for U(VI) from aqueous solutions under various environmental conditions. The advanced spectroscopy analysis confirmed the existence of abundant oxygen-containing functional groups (e.g., C-O, O-C=O, and C=O) on the surfaces of Ca/AI LDH-Gl and Ni/Al LDH-Gl, which could provide enough free active sites for the binding of U(VI). The maximum adsorption capacities of Macro-application (Environment U(VI) calculated from the Sips model were 266.5 mg.g(-1) for Ca/Al LDH-Gl and 142.3 mg.g(-1) for Ni/Al LDH-Gl at 298.15 K, and the higher adsorption capacity of Ca/Al LDH-Gl might be due to more functional groups and abundant high-activity "Ca-O" groups. Macroscopic experiments proved that the interaction of U(VI) on Ca/Al LDH-Gl and Ni/Al LDH-Gl was due to surface complexation and electrostatic interactions. The extended Xray absorption fine structure analysis confirmed that U(IV) did not transformation to U(VI) on solid particles, and stable inner sphere complexes were not formed by reduction interaction but by chemical adsorption. The density functional theory (DFT) calculations further evidenced that the higher adsorption energies (i.e., E-ad = 4.00 eV for Ca/AI LDH-Gl-UO22+ and E-ad = 2.43 eV for Ca/Al LDH-Gl-UO2CO3) were mainly attributed to stronger hydrogen bonds and electrostatic interactions. The superior immobilization performance of Ca/AI LDH-Gl supports a potential strategy for decontamination of UO22+ from wastewater, and it may provide new insights for the efficient removal of radionuclides in environmental pollution cleanup.
  •  
5.
  • Wu, Yuntao, et al. (författare)
  • Climatic controls on stable carbon and nitrogen isotope compositions of temperate grasslands in northern China
  • 2023
  • Ingår i: Plant and Soil. - : Springer. - 0032-079X .- 1573-5036. ; 491, s. 133-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The natural abundances of stable carbon (C) and nitrogen (N) isotopes (delta C-13 and delta N-15) are extensively used to indicate the C and N biogeochemical cycles at large spatial scales. However, the spatial patterns of delta C-13 and delta N-15 in plant-soil systems of grasslands in northern China and their main driving factors across regional climatic gradient are still not well understood. Methods We measured plant and soil delta C-13 and delta N-15 compositions as well as their associated environmental factors across 2000 km climatic gradient (-0.2 to 9 degrees C; 152 to 502 mm) in grasslands of northern China. Results The soil delta C-13 and delta N-15 values in surface were lower than those in bottom for temperate typical steppe but had no significant differences for temperate meadow steppe and temperate desert steppe. Soil delta C-13 values declined with increasing soil organic carbon (SOC) but increased as mean annual temperature (MAT). These changes were attributed to the microbial decomposition rate. The delta N-15 values in soil and plant were negatively correlated with MAT and mean annual precipitation (MAP), which were mainly related to the low soil organic matter mineralization rate and the shift of dominant species from C-4 to C-3. Conclusions Our results indicate the spatial patterns and different influencing factors on delta C-13 and delta N-15 values along the climatic gradient in grasslands of northern China. The findings will provide scientific references for future research on the C and N biogeochemical cycles of temperate grasslands.
  •  
6.
  • Wu, Yuntao, et al. (författare)
  • Silicon promotes biomass accumulation in Phragmites australis under waterlogged conditions in coastal wetland
  • 2024
  • Ingår i: Plant and Soil. - : Springer Nature. - 0032-079X .- 1573-5036.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Previous studies have shown that silicon (Si) can affect plant growth and yield by regulating the availability of other nutrients. However, the mechanisms by which Si affects plant biomass accumulation in coastal wetlands are not well explored. Methods We conducted a sampling campaign across the whole growing season of Phragmites australis under waterlogging and drought conditions in coastal wetland, and quantified the effects of Si availability on biomass accumulation. Results Compared with drought condition, the waterlogged condition improved the utilization efficiency of nitrogen (N) and phosphorus (P) of P. australis regulated by higher Si contents. Meanwhile, the increased Si contents promoted the utilization of N and P in leaf, suggesting that the increase in Si contents optimizes the photosynthetic process. Lignin contents in P. australis decreased with the increasing Si contents, which confirmed that Si can replace structural carbon components. In addition, principal component analysis (PCA) showed aboveground biomass accumulation of P. australis was synchronized with Si accumulation, indicating that Si was a beneficial element to promote biomass accumulation. Conclusions Our study implies that increasing Si availability is conducive to biomass accumulation of P. australis in waterlogged wetlands, which will provide important scientific references for the management of coastal wetland ecosystem and the increase of global 'blue carbon' sequestration.
  •  
7.
  • Xia, Shaopan, et al. (författare)
  • Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C:N ratio, δ13C-δ15N, and lignin biomarker
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:2, s. 417-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite increasing recognition of the critical role of coastal wetlands in mitigating climate change, sea‐level rise, and salinity increase, soil organic carbon (SOC) sequestration mechanisms in estuarine wetlands remain poorly understood. Here, we present new results on the source, decomposition, and storage of SOC in estuarine wetlands with four vegetation types, including single Phragmites australis (P, habitat I), a mixture of P. australis and Suaeda salsa (P + S, habitat II), single S. salsa (S, habitat III), and tidal flat (TF, habitat IV) across a salinity gradient. Values of δ13C increased with depth in aerobic soil layers (0–40 cm) but slightly decreased in anaerobic soil layers (40–100 cm). The δ15N was significantly enriched in soil organic matter at all depths than in the living plant tissues, indicating a preferential decomposition of 14N‐enriched organic components. Thus, the kinetic isotope fractionation during microbial degradation and the preferential substrate utilization are the dominant mechanisms in regulating isotopic compositions in aerobic and anaerobic conditions, respectively. Stable isotopic (δ13C and δ15N), elemental (C and N), and lignin composition (inherited (Ad/Al)s and C/V) were not completely consistent in reflecting the differences in SOC decomposition or accumulation among four vegetation types, possibly due to differences in litter inputs, root distributions, substrate quality, water‐table level, salinity, and microbial community composition/activity. Organic C contents and storage decreased from upstream to downstream, likely due to primarily changes in autochthonous sources (e.g., decreased onsite plant biomass input) and allochthonous materials (e.g., decreased fluvially transported upland river inputs, and increased tidally induced marine algae and phytoplankton). Our results revealed that multiple indicators are essential to unravel the degree of SOC decomposition and accumulation, and a combination of C:N ratios, δ13C, δ15N, and lignin biomarker provides a robust approach to decipher the decomposition and source of sedimentary organic matter along the river‐estuary‐ocean continuum.
  •  
8.
  • Zou, Yidong, et al. (författare)
  • Coagulation Behavior of Graphene Oxide on Nanocrystallined Mg/AI Layered Double Hydroxides : Batch Experimental and Theoretical Calculation Study
  • 2016
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 50:7, s. 3658-3667
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene oxide (GO) has attracted considerable attention because of its remarkable enhanced adsorption and multifunctional properties. However, the toxic properties of GO nanosheets released into the environment could lead to the instability of biological system. In aqueous phase, GO may interact with fine mineral particles, such as chloridion intercalated nanocrystallined Mg/Al layered double hydroxides (LDH-Cl) and nanocrystallined Mg/Al LDHs (LDH CO3), which are considered as coagulant molecules for the coagulation and removal of GO from aqueous solutions. Herein the coagulation of GO on LDHs were studied as a function of solution pH, ionic strength, contact time, temperature and coagulant concentration. The presence of LDH Cl and LDH-CO3 improved the coagulation of GO in solution efficiently, which was mainly attributed to the surface oxygen-containing functional groups of LDH Cl and LDH-CO3 occupying the binding sites of GO. The coagulation of GO by LDH-CI and LDH-CO3 was strongly dependent on pH and ionic strength. Results of coagulation of GO on LDHs was energetically favored by electrostatic interactions and hydrogen bonds, which was further evidenced by FTIR and XPS analysis. By integrating the experimental results, it was clear that LDH Cl could be potentially used as a cost-effective coagulant for the elimination of GO from aqueous solutions, which could efficiently decrease the potential toxicity of GO in the natural environment.
  •  
9.
  • Li, Chunyan, et al. (författare)
  • Pathways related to mitochondrial dysfunction in cartilage of endemic osteoarthritis patients in China
  • 2012
  • Ingår i: Science China Life Sciences. - : Springer Science+Business Media B.V.. - 1674-7305 .- 1869-1889. ; 55:12, s. 1057-1063
  • Tidskriftsartikel (refereegranskat)abstract
    • n this paper, we present the first evidence of differences in the mitochondria-related gene expression profiles of adult articular cartilage derived from patients with Kashin-Beck disease and normal controls. The expression of 705 mitochondria-related genes was analyzed by mitochondria-related gene expression analysis and ingenuity pathways analysis. Mitochondria-related gene expression analysis identified 9 up-regulated genes in Kashin-Beck disease based on their average expression ratio. Three canonical pathways involved in oxidative phosphorylation, apoptosis signaling and pyruvate metabolism were identified, which indicate the involvement of mitochondrial dysfunction in the pathogenesis of Kashin-Beck disease.
  •  
10.
  • Wu, Yidong, et al. (författare)
  • The Effect of Building Electricity Consumption on Residents' Subjective Well-Being : Evidence from China
  • 2022
  • Ingår i: Buildings. - : MDPI AG. - 2075-5309. ; 12:6, s. 710-
  • Tidskriftsartikel (refereegranskat)abstract
    • Residential electricity consumption has an important impact on China's construction of a low-carbon society. However, at present, little of the literature analyzes the influencing factors of residents' overall well-being from the perspective of micro investigation. Based on the micro mixed cross section data of the Chinese General Social Survey (CGSS), this paper empirically studies the impact of residential electricity consumption on residents' subjective well-being. In addition, in the heterogeneity analysis, we found that an increase in residential electricity consumption will improve the overall well-being of females and people with low levels of education, but it has no significant effect on males and people with high levels of education. Moreover, the increase in residential electricity consumption has improved the life satisfaction of young people and middle-aged people. Meanwhile, the increase in residential electricity consumption has a significant, positive impact on both low-income and high-income households. Further analysis shows that no nonlinear relationship exists between the increase in residents' power consumption and the improvement in life satisfaction. This paper enriches the research on residential energy and provides policy implications for the current Chinese government to save energy, reduce emissions, and improve residents' quality of life.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy