SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Yuncheng) "

Sökning: WFRF:(Wang Yuncheng)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Zhibin, et al. (författare)
  • Summary of the 3rd International Workshop on Gas-Dynamic Trap based Fusion Neutron Source (GDT-FNS)
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The 3rd International Workshop on Gas-Dynamic Trap-based Fusion Neutron Source (GDT-FNS) was held through the hybrid mode on 13-14 September 2021 in Hefei, China, jointly organized by the Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences (CAS), and the Budker Institute of Nuclear Physics (BINP), Russian Academy of Sciences (RAS). It followed the 1st GDT-FNS Workshop held in November 2018 in Hefei, China, and the 2nd taking place in November 2019 in Novosibirsk, Russian Federation. With the financial support from CAS and China Association for Science and Technology (CAST), this workshop was attended by more than 80 participants representing 20 institutes and universities from seven countries, with oral presentations broadcast via the Zoom conferencing system. Twenty-two presentations were made with topics covering design and key technologies, simulation and experiments, steady-state operation, status of the ALIANCE project, multi applications of neutron sources, and other concepts (Tokamaks, Mirrors, FRC, Plasma Focus, etc). The workshop consensus was made including the establishment of the ALIANCE International Working Group. The next GDT-FNS workshop is planned to be held in May 2022 in Novosibirsk.
  •  
2.
  • Ji, Longjuan, et al. (författare)
  • Structure and thermoacoustic instability of turbulent swirling lean premixed methane/hydrogen/air flames in a model combustor
  • 2024
  • Ingår i: International Journal of Hydrogen Energy. - 0360-3199. ; 60, s. 890-901
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure and thermoacoustic instability (TI) of premixed CH4/H2/air swirling flames were experimentally investigated for a range of hydrogen fraction (ηH2) up to 80% under different equivalence ratio (Φ) and swirl number (S) conditions. It is shown that the onset of TI is enhanced when increasing either ηH2, S, or Φ. The dominant frequency of TI increases dramatically with ηH2. The higher dominant frequency in the hydrogen-enriched flames can be attributed to a shorter flame length which results in a reduced flame convection time. It is observed that the unstable flames are always accompanied by the appearance of outer recirculation zone (ORZ) flame. Therefore, the flame kernel residing in the ORZ can be an indicator of the occurrence of TI. The flame front of thermoacoustic unstable flames was observed to be more wrinkled, e.g., with larger mean absolute curvature (κ abs) and local flame surface area ratio (δΣmax). Importantly, the phase-locked analysis shows that κ abs and δΣmax can be modified at different oscillation phases, and their maximum and minimum values are simultaneously achieved at phase angles θ of about 0° and 180°, respectively. Variations of κ abs and δΣmax are in phase with the heat release rate, indicating a strong correlation between the TI and flame structure modification; however, they show a phase lag of about 72° behind the pressure in this work. These results are vital when understanding and predicting the TI based on the flame structure, especially when adopting a visual detection method of the instability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy