SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Yuxiang) "

Sökning: WFRF:(Wang Yuxiang)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Daneshjou, Roxana, et al. (författare)
  • Working toward precision medicine : Predicting phenotypes from exomes in the Critical Assessment of Genome Interpretation (CAGI) challenges
  • 2017
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 38:9, s. 1182-1192
  • Tidskriftsartikel (refereegranskat)abstract
    • Precision medicine aims to predict a patient's disease risk and best therapeutic options by using that individual's genetic sequencing data. The Critical Assessment of Genome Interpretation (CAGI) is a community experiment consisting of genotype-phenotype prediction challenges; participants build models, undergo assessment, and share key findings. For CAGI 4, three challenges involved using exome-sequencing data: Crohn's disease, bipolar disorder, and warfarin dosing. Previous CAGI challenges included prior versions of the Crohn's disease challenge. Here, we discuss the range of techniques used for phenotype prediction as well as the methods used for assessing predictive models. Additionally, we outline some of the difficulties associated with making predictions and evaluating them. The lessons learned from the exome challenges can be applied to both research and clinical efforts to improve phenotype prediction from genotype. In addition, these challenges serve as a vehicle for sharing clinical and research exome data in a secure manner with scientists who have a broad range of expertise, contributing to a collaborative effort to advance our understanding of genotype-phenotype relationships.
  •  
2.
  • Fu, Yifeng, 1984, et al. (författare)
  • Graphene related materials for thermal management
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Almost 15 years have gone ever since the discovery of graphene as a single atom layer. Numerous papers have been published to demonstrate its high electron mobility, excellent thermal and mechanical as well as optical properties. We have recently seen more and more applications towards using graphene in commercial products. This paper is an attempt to review and summarize the current status of the research of the thermal properties of graphene and other 2D based materials including the manufacturing and characterization techniques and their applications, especially in electronics and power modules. It is obvious from the review that graphene has penetrated the market and gets more and more applications in commercial electronics thermal management context. In the paper, we also made a critical analysis of how mature the manufacturing processes are; what are the accuracies and challenges with the various characterization techniques and what are the remaining questions and issues left before we see further more applications in this exciting and fascinating field.
  •  
3.
  • Song, Wenqing, et al. (författare)
  • Heterogeneous Reconfigurable Accelerator for Homomorphic Evaluation on Encrypted Data
  • 2024
  • Ingår i: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536. ; 12, s. 11850-11864
  • Tidskriftsartikel (refereegranskat)abstract
    • Homomorphic encryption (HE) enables third -party servers to perform computations on encrypted user data while preserving privacy. Although conceptually attractive, the speed of software implementations of HE is almost impractical. To address this challenge, various domain -specific architectures have been proposed to accelerate homomorphic evaluation, but efficiency remains a bottleneck. In this paper, we propose a homomorphic evaluation accelerator with heterogeneous reconfigurable modular computing units (RCUs) for the Brakerski/Fan-Vercauteren (BFV) scheme. RCUs leverage operator abstraction to efficiently perform basic sub -operations of homomorphic evaluation such as residue number system (RNS) conversion, number theoretic transform (NTT), and other modular computations. By combining these sub -operations, complex homomorphic evaluation operations like multiplication, rotation, and addition are efficiently executed. To address the high demand for data access and improve memory efficiency, we design a coordinate -based address encoding strategy that enables in -place and conflict -free data access. Furthermore, specific optimizations are performed on the core sub -operations such as NTT and automorphism. The proposed architecture is implemented on Xilinx Virtex-7 and UltraScale+ FPGA platforms and evaluated for polynomials of length 4096. Compared to state-of-the-art accelerators with the same parameter set, our accelerator achieves the following advantages: 1) 2.04x to 3.33x reduction in the area -time product (ATP) for the key sub -operation NTT, 2) 1.08x to 7.42x reduction in latency for homomorphic multiplication with higher area efficiency, and 3) support for a wider range of homomorphic evaluation operations, including rotation, compared to other BFV-based accelerators.
  •  
4.
  • Su, Wenyan, et al. (författare)
  • 13.4 % Efficiency from All-Small-Molecule Organic Solar Cells Based on a Crystalline Donor with Chlorine and Trialkylsilyl Substitutions
  • 2021
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 14:17, s. 3535-3543
  • Tidskriftsartikel (refereegranskat)abstract
    • How to simultaneously achieve both high open-circuit voltage (Voc) and high short-circuit current density (Jsc) is a big challenge for realising high power conversion efficiency (PCE) in all-small-molecule organic solar cells (all-SM OSCs). Herein, a novel small molecule (SM)-donor, namely FYSM−SiCl, with trialkylsilyl and chlorine substitutions was designed and synthesized. Compared to the original SM-donor FYSM−H, FYSM−Si with trialkylsilyl substitution showed a decreased crystallinity and lower highest occupied molecular orbital (HOMO) level, while FYSM−SiCl had an improved crystallinity, more ordered packing arrangement, significantly lower HOMO level, and predominant “face-on” orientation. Matched with a SM-acceptor Y6, the FYSM−SiCl-based all-SM OSCs exhibited both high Voc of 0.85 V and high Jsc of 23.7 mA cm−2, which is rare for all-SM OSCs and could be attributed to the low HOMO level of FYSM−SiCl donor and the delicate balance between high crystallinity and suitable blend morphology. As a result, FYSM−SiCl achieved a high PCE of 13.4 % in all-SM OSCs, which was much higher than those of the FYSM−H- (10.9 %) and FYSM−Si-based devices (12.2 %). This work demonstrated a promising method for the design of efficient SM-donors by a side-chain engineering strategy via the introduction of trialkylsilyl and chlorine substitutions.
  •  
5.
  • Fan, Qunping, 1989, et al. (författare)
  • High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor
  • 2021
  • Ingår i: Science in China Series B. - : Springer Nature. - 1674-7291 .- 1869-1870. ; 64, s. 1380-1388
  • Tidskriftsartikel (refereegranskat)abstract
    • Anon-fully conjugated polymer as a new class of acceptor materials has shown some advantages over its small molecular counterpart when used in photoactive layers for all-polymer solar cells (all-PSCs), despite a low power conversion efficiency (PCE) caused by its narrow absorption spectra. Herein, a novel non-fully conjugated polymer acceptor PFY-2TS with a low bandgap of similar to 1.40 eV was developed, via polymerizing a large pi-fused small molecule acceptor (SMA) building block (namely YBO) with a non-conjugated thioalkyl linkage. Compared with its precursor YBO, PFY-2TS retains a similar low bandgap but a higher LUMO level. Moreover, compared with the structural analog of YBO-based fully conjugated polymer acceptor PFY-DTC, PFY-2TS shows similar absorption spectrum and electron mobility, but significantly different molecular crystallinity and aggregation properties, which results in optimal blend morphology with a polymer donor PBDB-T and better device physical processes in all-PSCs. As a result, PFY-2TS-based all-PSCs achieved a PCE of 12.31% with a small energy loss of 0.56 eV enabled by the reduced non-radiative energy loss (0.24 eV), which is better than that of 11.08% for the PFY-DTC-based ones. Our work clearly demonstrated that non-fully conjugated polymers as a new class of acceptor materials are very promising for the development of high-performance all-PSCs.
  •  
6.
  • Fan, Qunping, et al. (författare)
  • Unidirectional Sidechain Engineering to Construct Dual-Asymmetric Acceptors for 19.23 % Efficiency Organic Solar Cells with Low Energy Loss and Efficient Charge Transfer
  • 2023
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 62:36
  • Tidskriftsartikel (refereegranskat)abstract
    • Achieving both high open-circuit voltage (V-oc) and short-circuit current density (J(sc)) to boost power-conversion efficiency (PCE) is a major challenge for organic solar cells (OSCs), wherein high energy loss (E-loss) and inefficient charge transfer usually take place. Here, three new Y-series acceptors of mono-asymmetric asy-YC11 and dual-asymmetric bi-asy-YC9 and bi-asy-YC12 are developed. They share the same asymmetric D(1)AD(2) (D-1=thieno[3,2-b]thiophene and D-2=selenopheno[3,2-b]thiophene) fused-core but have different unidirectional sidechain on D-1 side, allowing fine-tuned molecular properties, such as intermolecular interaction, packing pattern, and crystallinity. Among the binary blends, the PM6 : bi-asy-YC12 one has better morphology with appropriate phase separation and higher order packing than the PM6 : asy-YC9 and PM6 : bi-asy-YC11 ones. Therefore, the PM6 : bi-asy-YC12-based OSCs offer a higher PCE of 17.16 % with both high V-oc and J(sc), due to the reduced E-loss and efficient charge transfer properties. Inspired by the high V-oc and strong NIR-absorption, bi-asy-YC12 is introduced into efficient binary PM6 : L8-BO to construct ternary OSCs. Thanks to the broadened absorption, optimized morphology, and furtherly minimized E-loss, the PM6 : L8-BO : bi-asy-YC12-based OSCs achieve a champion PCE of 19.23 %, which is one of the highest efficiencies among these annealing-free devices. Our developed unidirectional sidechain engineering for constructing bi-asymmetric Y-series acceptors provides an approach to boost PCE of OSCs.
  •  
7.
  • Kang, Chengjun, et al. (författare)
  • Covalent organic framework atropisomers with multiple gas-triggered structural flexibilities
  • 2023
  • Ingår i: Nature Materials. - 1476-1122 .- 1476-4660. ; 22:5, s. 636-643
  • Tidskriftsartikel (refereegranskat)abstract
    • Covalent organic frameworks (COFs) are emerging crystalline porous polymers, showing great potential for applications but lacking gas-triggered flexibility. Atropisomerism was experimentally discovered in 1922 but has rarely been found in crystals with infinite framework structures. Here we report atropisomerism in COF single crystals. The obtained COF atropisomers, namely COF-320 and COF-320-A, have identical chemical and interpenetrated structures but differ in the spatial arrangement of repeating units. In contrast to the rigid COF-320 structure, its atropisomer (COF-320-A) exhibits unconventional gas sorption behaviours with one or more sorption steps in isotherms at different temperatures. Single-crystal structures determined from continuous rotation electron diffraction and in situ powder X-ray diffraction demonstrate that these adsorption steps originate from internal pore expansion with or without changing the crystal space group. COF-320-A recognizes different gases by expanding its internal pores continuously (crystal-to-amorphous transition) or discontinuously (crystal-to-crystal transition) or having mixed transition styles, distinguishing COF-320-A from existing soft/flexible porous crystals. These findings extend atropisomerism from molecules to crystals and propel COFs into the covalently linked soft porous crystal regime, further advancing applications of soft porous crystals in gas sorption, separation and storage.
  •  
8.
  • Kang, Chengjun, et al. (författare)
  • Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Resolving single-crystal structures of two-dimensional covalent organic frameworks (2D COFs) is a great challenge, hindered in part by limited strategies for growing high-quality crystals. A better understanding of the growth mechanism facilitates development of methods to grow high-quality 2D COF single crystals. Here, we take a different perspective to explore the 2D COF growth process by tracing growth intermediates. We discover two different growth mechanisms, nucleation and self-healing, in which self-assembly and pre-arrangement of monomers and oligomers are important factors for obtaining highly crystalline 2D COFs. These findings enable us to grow micron-sized 2D single crystalline COF Py-1P. The crystal structure of Py-1P is successfully characterized by three-dimensional electron diffraction (3DED), which confirms that Py-1P does, in part, adopt the widely predicted AA stacking structure. In addition, we find the majority of Py-1P crystals (>90%) have a previously unknown structure, containing 6 stacking layers within one unit cell. 
  •  
9.
  • Li, Sirui, et al. (författare)
  • Glioma grading, molecular feature classification, and microstructural characterization using MR diffusional variance decomposition (DIVIDE) imaging
  • 2021
  • Ingår i: European Radiology. - : Springer Science and Business Media LLC. - 0938-7994 .- 1432-1084. ; 31:11, s. 8197-8207
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To evaluate the potential of diffusional variance decomposition (DIVIDE) for grading, molecular feature classification, and microstructural characterization of gliomas. Materials and methods: Participants with suspected gliomas underwent DIVIDE imaging, yielding parameter maps of fractional anisotropy (FA), mean diffusivity (MD), anisotropic mean kurtosis (MKA), isotropic mean kurtosis (MKI), total mean kurtosis (MKT), MKA/MKT, and microscopic fractional anisotropy (μFA). Tumor type and grade, isocitrate dehydrogenase (IDH) 1/2 mutant status, and the Ki-67 labeling index (Ki-67 LI) were determined after surgery. Statistical analysis included 33 high-grade gliomas (HGG) and 17 low-grade gliomas (LGG). Tumor diffusion metrics were compared between HGG and LGG, among grades, and between wild and mutated IDH types using appropriate tests according to normality assessment results. Receiver operating characteristic and Spearman correlation analysis were also used for statistical evaluations. Results: FA, MD, MKA, MKI, MKT, μFA, and MKA/MKT differed between HGG and LGG (FA: p = 0.047; MD: p = 0.037, others p < 0.001), and among glioma grade II, III, and IV (FA: p = 0.048; MD: p = 0.038, others p < 0.001). All diffusion metrics differed between wild-type and mutated IDH tumors (MKI: p = 0.003; others: p < 0.001). The metrics that best discriminated between HGG and LGGs and between wild-type and mutated IDH tumors were MKT and FA respectively (area under the curve 0.866 and 0.881). All diffusion metrics except FA showed significant correlation with Ki-67 LI, and MKI had the highest correlation coefficient (rs = 0.618). Conclusion: DIVIDE is a promising technique for glioma characterization and diagnosis. Key Points: • DIVIDE metrics MKIis related to cell density heterogeneity while MKAand μFA are related to cell eccentricity. • DIVIDE metrics can effectively differentiate LGG from HGG and IDH mutation from wild-type tumor, and showed significant correlation with the Ki-67 labeling index. • MKIwas larger than MKAwhich indicates predominant cell density heterogeneity in gliomas. • MKAand MKIincreased with grade or degree of malignancy, however with a relatively larger increase in the cell eccentricity metric MKAin relation to the cell density heterogeneity metric MKI.
  •  
10.
  • Li, Yuxiang, et al. (författare)
  • Influence of backbone modification of difluoroquinoxaline-based copolymers on the interchain packing, blend morphology and photovoltaic properties of nonfullerene organic solar cells
  • 2019
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7534 .- 2050-7526. ; 7:6, s. 1681-1689
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to understand the influence of molecular ordering and orientation on the performance of nonfullerene (NF) solar cells, we synthesized a series of difluoroquinoxaline-based alternating copolymers: starting from poly(2,2′-bithiophene-alt-(2,3-bis(3,4-bis(octyloxy)phenyl)-6,7-difluoroquinoxaline)) (PDFQx-2T), we modified the polymeric backbone by incorporating fluorine atoms (PDFQx-2T2F) or thiophene (PDFQx-3T) or a benzene ring (PDFQx-2TB) in the bithiophene comonomeric unit. The structure modification significantly affected the photovoltaic performance with power conversion efficiencies (PCEs) of 3.95% for PDFQx-2TB:ITIC, 4.82% for PDFQx-2T:ITIC, 4.93% for PDFQx-2T2F:ITIC and 8.13% for PDFQx-3T:ITIC. The dramatic increase in the PCE of PDFQx-3T:ITIC was attributed to improvements in the short-circuit current density (J SC ) and fill factor (FF). From the resonant soft X-ray scattering and grazing incidence X-ray scattering measurements, the PDFQx-3T polymers had well-developed, face-on oriented crystallites, allowing the formation of face-to-face alignment with the face-on ordered ITIC molecules at the interfaces. Also, the PDFQx-3T:ITIC blend films exhibited well intermixed blend morphology with smaller domain spacings. These combined features contributed to efficient charge generation with the highest exciton dissociation probability among the four different polymer:ITIC systems. In addition, dominant face-on orientation of both PDFQx-3T polymers and ITIC acceptors with a balanced crystalline coherence length ratio (CCL polymer /CCL ITIC ) (0.87, based on the out-of-plane (010) diffraction peaks of PDFQx polymers and ITIC acceptors) led to a more balanced charge mobility than other blends, explaining the highest J SC and FF in the PDFQx-3T:ITIC NF devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21
Typ av publikation
tidskriftsartikel (17)
konferensbidrag (3)
annan publikation (1)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ahuja, Rajeev, 1965- (3)
Wang, Ergang, 1981 (3)
Zou, Zhuo (3)
Zou, Xiaodong (2)
Huang, Zhehao (2)
Chiu, Justin NingWei ... (2)
visa fler...
Zhao, Dan (2)
Li, Li (2)
Zheng, Lirong (2)
Lu, Zhonghai (2)
Wang, Qian, 1984- (2)
Zhang, Yan (1)
Luo, Wei (1)
Liu, Yang (1)
Liu, Johan, 1960 (1)
Seoane, Fernando, 19 ... (1)
Seoane, Fernando (1)
Yang, Jie (1)
Zhang, Wei (1)
Szczepankiewicz, Fil ... (1)
Niroula, Abhishek (1)
Topgaard, Daniel (1)
Zhang, Zhi-Bin (1)
Lasič, Samo (1)
Zheng, Li-Rong (1)
van Westen, Danielle (1)
Jones, David T. W. (1)
Vihinen, Mauno (1)
Panda, Pritam Kumar, ... (1)
Li, Yongfang (1)
Kim, Minseok (1)
Zandi, Peter (1)
Potash, James B (1)
Wang, Yang (1)
Casadio, Rita (1)
Kabiri Samani, Majid ... (1)
Woo, Han Young (1)
Wang, Kun (1)
Zhang, Rui (1)
Moons, Ellen, profes ... (1)
He, Sailing (1)
Gao, Feng, 1981- (1)
Gao, Feng (1)
Wang, Thanh, 1979- (1)
Wang, Nan (1)
Ferrari, Carlo (1)
Liu, Jing (1)
Li, Huan (1)
Edwards, Matthew (1)
Bao, Dongxuan (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (8)
Uppsala universitet (4)
Chalmers tekniska högskola (4)
Linköpings universitet (3)
Stockholms universitet (2)
Lunds universitet (2)
visa fler...
Örebro universitet (1)
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Teknik (8)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy