SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Ziyun) "

Sökning: WFRF:(Wang Ziyun)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Haibin, et al. (författare)
  • Strain in Copper/Ceria Heterostructure Promotes Electrosynthesis of Multicarbon Products
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:1, s. 346-354
  • Tidskriftsartikel (refereegranskat)abstract
    • Elastic strains in metallic catalysts induce enhanced selectivity for carbon dioxide reduction (CO2R) toward valuable multicarbon (C2+) products. However, under working conditions, the structure of catalysts inevitably undergoes reconstruction, hardly retaining the initial strain. Herein, we present a metal/metal oxide synthetic strategy to introduce and maintain the tensile strain in a copper/ceria heterostructure, enabled by the presence of a thin interface layer of Cu2O/CeO2. The tensile strain in the copper domain and deficient electron environment around interfacial Cu sites resulted in strengthened adsorption of carbonaceous intermediates and promoted*CO dimerization. The strain effect in the copper/ceria heterostructure leads to an improved C2+ selectivity with a maximum Faradaic efficiency of 76.4% and a half-cell power conversion efficiency of 49.1%. The fundamental insights gained from this system can facilitate the rational design of heterostructure catalysts for CO2R.
  •  
2.
  • Wang, Ning, et al. (författare)
  • Boride-derived oxygen-evolution catalysts
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal borides/borates have been considered promising as oxygen evolution reaction catalysts; however, to date, there is a dearth of evidence of long-term stability at practical current densities. Here we report a phase composition modulation approach to fabricate effective borides/borates-based catalysts. We find that metal borides in-situ formed metal borates are responsible for their high activity. This knowledge prompts us to synthesize NiFe-Boride, and to use it as a templating precursor to form an active NiFe-Borate catalyst. This boride-derived oxide catalyzes oxygen evolution with an overpotential of 167 mV at 10 mA/cm2 in 1 M KOH electrolyte and requires a record-low overpotential of 460 mV to maintain water splitting performance for over 400 h at current density of 1 A/cm2. We couple the catalyst with CO reduction in an alkaline membrane electrode assembly electrolyser, reporting stable C2H4 electrosynthesis at current density 200 mA/cm2 for over 80 h.
  •  
3.
  • Deng, Kaiqiang, et al. (författare)
  • A dry-wet teleconnection between southwestern and northeastern China in winter and early spring
  • 2024
  • Ingår i: CLIMATE DYNAMICS. - 0930-7575 .- 1432-0894.
  • Tidskriftsartikel (refereegranskat)abstract
    • Global climate change has led to more frequent and intense dry and wet extremes, causing considerable socio-economic losses, but whether these extremes in distant regions are linked and what mechanisms are driving their changes remain unclear. Based on the standardized precipitation-evapotranspiration index and ERA5 reanalysis data, this study reveals a dry-wet teleconnection between southwestern China (SWC) and northeastern China (NEC) from January to April: when SWC was extremely dry, NEC tended to be anomalously wet, and vice versa. Although the seesawing teleconnection is most significant on interannual time scales, it also experienced interdecadal changes, with wet SWC and dry NEC in 1979-1998 and 2019-present and dry SWC and wet NEC in 1999-2018. Further investigations suggest that the pattern of dry SWC and wet NEC is related to anomalous anticyclones (cyclones) over SWC (NEC), which lead to significant changes in surface temperature and total precipitation in the respective regions. The dryness in western (eastern) SWC is mainly influenced by the changes in temperature (precipitation), while the NEC wetness is affected mainly by the changes in temperature. Observational and modeling studies further suggest that the pressure anomalies over SWC and NEC are caused by zonally and meridionally propagating Rossby wave trains, triggered by the North Atlantic Oscillation and the enhanced Indo-Pacific convection, respectively. These wave trains further lead to hydroclimatic extremes in North America, southern Europe, and the Middle East by regulating the atmospheric circulation anomalies over these regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy