SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wani Tanveer A.) "

Sökning: WFRF:(Wani Tanveer A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aziz, Mubashir, et al. (författare)
  • Deep Learning and Structure-Based Virtual Screening for Drug Discovery against NEK7 : A Novel Target for the Treatment of Cancer
  • 2022
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 27:13
  • Tidskriftsartikel (refereegranskat)abstract
    • NIMA-related kinase7 (NEK7) plays a multifunctional role in cell division and NLRP3 inflammasone activation. A typical expression or any mutation in the genetic makeup of NEK7 leads to the development of cancer malignancies and fatal inflammatory disease, i.e., breast cancer, non-small cell lung cancer, gout, rheumatoid arthritis, and liver cirrhosis. Therefore, NEK7 is a promising target for drug development against various cancer malignancies. The combination of drug repurposing and structure-based virtual screening of large libraries of compounds has dramatically improved the development of anticancer drugs. The current study focused on the virtual screening of 1200 benzene sulphonamide derivatives retrieved from the PubChem database by selecting and docking validation of the crystal structure of NEK7 protein (PDB ID: 2WQN). The compounds library was subjected to virtual screening using Auto Dock Vina. The binding energies of screened compounds were compared to standard Dabrafenib. In particular, compound 762 exhibited excellent binding energy of -42.67 kJ/mol, better than Dabrafenib (-33.89 kJ/mol). Selected drug candidates showed a reactive profile that was comparable to standard Dabrafenib. To characterize the stability of protein-ligand complexes, molecular dynamic simulations were performed, providing insight into the molecular interactions. The NEK7-Dabrafenib complex showed stability throughout the simulated trajectory. In addition, binding affinities, pIC50, and ADMET profiles of drug candidates were predicted using deep learning models. Deep learning models predicted the binding affinity of compound 762 best among all derivatives, which supports the findings of virtual screening. These findings suggest that top hits can serve as potential inhibitors of NEK7. Moreover, it is recommended to explore the inhibitory potential of identified hits compounds through in-vitro and in-vivo approaches.
  •  
2.
  • Bilal, Muhammad Sajjad, et al. (författare)
  • Computational Investigation of 1, 3, 4 Oxadiazole Derivatives as Lead Inhibitors of VEGFR 2 in Comparison with EGFR : Density Functional Theory, Molecular Docking and Molecular Dynamics Simulation Studies
  • 2022
  • Ingår i: Biomolecules. - : MDPI. - 2218-273X. ; 12:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factor (VEGF) is an angiogenic factor involved in tumor growth and metastasis. Gremlin has been proposed as a novel therapeutic pathway for the treatment of renal inflammatory diseases, acting via VEGFR 2 receptor. To date, most FDA-approved tyrosine kinase (TK) inhibitors have been reported as dual inhibitors of EGFR and VEGFR 2. The aim of the present study was to find the potent and selective inhibitor of VEGFR 2 specifically for the treatment of renal cancer. Fourteen previously identified anti-inflammatory compounds i.e., 1, 3, 4 oxadiazoles derivatives by our own group were selected for their anti-cancer potential, targeting the tyrosine kinase (TK) domain of VEGFR2 and EGFR. A detailed virtual screening-based study was designed viz density functional theory (DFT) study to find the compounds stability and reactivity, molecular docking for estimating binding affinity, SeeSAR analysis and molecular dynamic simulations to confirm protein ligand complex stability and ADMET properties to find the pharmacokinetic profile of all compounds. The DFT results suggested that among all the derivatives, the 7g, 7j, and 7l were chemically reactive and stable derivatives. The optimized structures obtained from the DFTs were further selected for molecular docking, and the results suggested that 7g, 7j and 7l derivatives as the best inhibitors of VEGFR 2 with binding energy values -46.32, -48.89 and -45.01 kJ/mol. The Estimated inhibition constant (IC50) of hit compound 7j (0.009 mu M) and simulation studies of its complexes confirms its high potency and best inhibitor of VEGFR2. All the derivatives were also docked with EGFR, where they showed weak binding energies and poor interactions, important compound 7g, 7j and 7i exhibited binding energy of -31.01, -33.23 and -34.19 kJ/mol respectively. Furthermore, the anticancer potential of the derivatives was confirmed by cell viability (MTT) assay using breast cancer and cervical cancer cell lines. At the end, the results of ADMET studies confirmed these derivatives as drug like candidates. Conclusively, the current study suggested substituted oxadiazoles as the potential anticancer compounds which exhibited more selectivity towards VEGFR2 in comparison to EGFR. Therefore, the identified lead molecules can be used for the synthesis of more potent derivatives of VEGFR2, along with extensive in vitro and in vivo experiments, that can be used to treat various cancers, especially renal cancers, and to prevent angiogenesis due to aberrant expression of VEGFR2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy