SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wardecki Dariusz Wojciech 1981) "

Sökning: WFRF:(Wardecki Dariusz Wojciech 1981)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdeldaim, Aly, 1993, et al. (författare)
  • Large easy-axis anisotropy in the one-dimensional magnet BaMo(PO4)(2)
  • 2019
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9969 .- 2469-9950. ; 100:21
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an extensive experimental and theoretical study on the low-temperature magnetic properties of the monoclinic anhydrous alum compound BaMo(PO4)(2). The magnetic susceptibility reveals strong antiferromagnetic interactions theta(CW) = -167 K and long-range magnetic order at T-N = 22 K, in agreement with a recent report. Powder neutron diffraction furthermore shows that the order is collinear, with the moments near the ac plane. Neutron spectroscopy reveals a large excitation gap Delta = 15 meV in the low-temperature ordered phase, suggesting a much larger easy-axis spin anisotropy than anticipated. However, the large anisotropy justifies the relatively high ordered moment, Neel temperature, and collinear order observed experimentally and is furthermore reproduced in a first-principles calculations by using a new computational scheme. We therefore propose BaMo(PO4)(2) to host S = 1 antiferromagnetic chains with large easy-axis anisotropy, which has been theoretically predicted to realize novel excitation continua.
  •  
2.
  • Cheung, Ocean, et al. (författare)
  • Selective Adsorption of CO2on Zeolites NaK-ZK-4 with Si/Al of 1.8-2.8
  • 2020
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 5:39, s. 25371-25380
  • Tidskriftsartikel (refereegranskat)abstract
    • Zeolites with appropriately narrow pore apertures can kinetically enhance the selective adsorption of CO2 over N2. Here, we showed that the exchangeable cations (e.g., Na+ or K+) on zeolite ZK-4 play an important role in the CO2 selectivity. Zeolites NaK ZK-4 with Si/Al = 1.8-2.8 had very high CO2 selectivity when an intermediate number of the exchangeable cations were K+ (the rest being Na+). Zeolites NaK ZK-4 with Si/Al = 1.8 had high CO2 uptake capacity and very high CO2-over-N2 selectivity (1190). Zeolite NaK ZK-4 with Si/Al = 2.3 and 2.8 also had enhanced CO2 selectivity with an intermediate number of K+ cations. The high CO2 selectivity was related to the K+ cation in the 8-rings of the α-cage, together with Na+ cations in the 6-ring, obstructing the diffusion of N2 throughout the zeolite. The positions of the K+ cation in the 8-ring moved slightly (max 0.2 Å) toward the center of the α-cage upon the adsorption of CO2, as revealed by in situ X-ray diffraction. The CO2-over-N2 selectivity was somewhat reduced when the number of K+ cations approached 100%. This was possibly due to the shift in the K+ cation positions in the 8-ring when the number of Na+ was going toward 0%, allowing N2 diffusion through the 8-ring. According to in situ infrared spectroscopy, the amount of chemisorbed CO2 was reduced on zeolite ZK-4s with increasing Si/Al ratio. In the context of potential applications, a kinetically enhanced selection of CO2 could be relevant for applications in carbon capture and bio- and natural gas upgrading.
  •  
3.
  • Franco Tabares, Sebastian, et al. (författare)
  • Effect of airborne-particle abrasion and polishing on novel translucent zirconias: Surface morphology, phase transformation and insights into bonding
  • 2021
  • Ingår i: Journal of Prosthodontic Research. - : Japan Prosthodontic Society. - 1883-1958 .- 2212-4632. ; 65:1, s. 97-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The purpose this study was to investigate the effect of Kern ' s air-borne particle abrasion protocol (KAPA) and polishing on two translucent zirconias (4Y, 5Y-zirconias) compared to a traditional zirconia (3Y-zirconia). Methods: Two different surface treatments were analysed by X-ray diffraction (XRD) and interferometry 1) KAPA (0.1 MPa, 50 mu m alumina, 10-12 mm distance, 15 sec and 30 sec and cleaning in ultrasound using isopropyl alcohol 99%) and 2) Clinical-delivery polishing paste (Zircon Brite, Dental Ventures, USA). Shear-bond strength tests (SBS's) were performed with a highly polished and virtually flat surface in combination with a 10-MDP based cement and a surface modified by KAPA in combination with zinc phosphate cement. The SBS was expressed in terms of MPa. Results: The mean values for monoclinic content were 13 wt%, 7 wt% and 2 wt% for 3Y-, 4Y- and 5Y-zirconias respectively, no differences were found between 15 and 30 seconds. Polishing did not result in phase transformation to monoclinic phase in any of the zirconias. The rhombohedral phase was identified in all types of zirconias regardless of surface treatment. Shear-bond strength tests showed 5 MPa for polished/10-MDP based cement and 3 MPa for KAPA/Zinc phosphate. Statistically significant differences were found between the two different surface treatments but not between the types of zirconias. Conclusions: KAPA for 15 sec seems to be equal to 30 sec regarding morphology and phase transformation. Sole micro-retention appears not to be fully responsible for the bonding phenomena of 10-MDP and zirconia that underwent KAPA.
  •  
4.
  • Grins, J., et al. (författare)
  • A structural study of Ruddlesden-Popper phases Sr3-xYx(Fe125Ni075)O7-δ with x ≤ 0.75 by neutron powder diffraction and EXAFS/XANES spectroscopy
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 6:13, s. 5313-5323
  • Tidskriftsartikel (refereegranskat)abstract
    • The structures of Ruddlesden-Popper n = 2 member phases Sr 3-x Y x Fe 1 25Ni0.75O 7-δ with 0 ≤ x ≤ 0.75 have been investigated using neutron powder diffraction and K-edge Fe and Ni EXAFS/XANES spectroscopy in order to gain information about the evolution of the oxygen vacancy distribution and Fe/Ni oxidation state with x. Both samples prepared at 1300°C under a flow of N 2 (g), with δ = 1.41-1.00, and samples subsequently annealed in air at 900°C, with δ = 0.44-0.59, were characterized. The as-prepared x = 0.75 phase has δ = 1, the O1 atom site is vacant, and the Fe 3+ /Ni 2+ ions have a square pyramidal coordination. With decreasing x the O3 occupancy decreases nearly linearly to 81% for x = 0, while the O1 occupancy increases from 0 for x = 0.4 to 33% for x = 0. The air-annealed x = 0.75 sample has a δ value of 0.59 and the Fe 3+ /Fe 4+ /Ni 2+ /Ni 3+ ions have both square pyramidal and octahedral coordination. With decreasing x, the δ value decreases to 0.45 for x = 0, implying an increase in the oxidation states of Fe/Ni ions. EXAFS/XANES data show that for the as-prepared samples the coordination changes are predominantly for Ni 2+ ions and that the air-annealed samples contain both Fe 3+ /Fe 4+ and Ni 2+ /Ni 3+ ions.
  •  
5.
  • Keshavarz, Samara, et al. (författare)
  • Magnetic properties of Ruddlesden-Popper phases Sr 3 − x Y x ( Fe 1.25 Ni 0.75 ) O 7 − δ : A combined experimental and theoretical investigation
  • 2018
  • Ingår i: Physical Review Materials. - 2475-9953. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a comprehensive study of the magnetic properties of Sr3-xYx(Fe1.25Ni0.75)O-7(-delta )(0 <= x <= 0.75). Experimentally, the magnetic properties are investigated using superconducting quantum interference device (SQUID) magnetometry and neutron powder diffraction (NPD). This is complemented by a theoretical study based on density functional theory as well as the Heisenberg exchange parameters. Experimental results show an increase in the Ned temperature (T-N) with an increase of Y concentrations and O occupancy. The NPD data reveal that all samples are antiferromagnetically ordered at low temperatures, which has been confirmed by our theoretical simulations for the selected samples. Our first-principles calculations suggest that the three-dimensional magnetic order is stabilized due to finite interlayer exchange couplings. The latter give rise to finite interlayer spin-spin correlations, which disappear above T-N.
  •  
6.
  • Rzepka, Przemyslaw, et al. (författare)
  • CO2-Induced Displacement of Na+ and K+ in Zeolite INaKI-A
  • 2018
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:30, s. 17211-17220
  • Tidskriftsartikel (refereegranskat)abstract
    • Adsorption technologies offer opportunities to remove CO2 from gas mixtures, and zeolite A has good properties that include a high capacity for the adsorption of CO2 . It has been argued that its abilities to separate CO2 from N-2 in flue gas and CO2 from CH4 in raw biogas can be further enhanced by replacing Na+ with K+ in the controlling pore window apertures. In this study, several compositions of I Na12-xKxI-A were prepared and studied with respect to the adsorption of CO2 N-2, and CH4, and the detailed structural changes were induced by the adsorption of CO2. The adsorption of CO2 gradually decreased on an increasing content of K+, whereas the adsorption of N-2 and CH4 was completely nulled already at relatively small contents of K. Of the studied samples, INa9K3I-A exhibited the highest CO2 over N-2/CH4 selectivities, with a(CO2/N-2 ) > 21 000 and a(CO2/CH4) > 8000. For samples with and without adsorbed CO2 analyses of powder X-ray diffraction (PXRD) data revealed that K+ preferred to substitute Na+ at the eight-ring sites. The Na(+ )ions at the six-ring sites were gradually replaced by K+ on an increasing content, and these sites split into two positions on both sides of the six-ring mirror plane. It was observed that both the eight-ring and six-ring sites tailored the maximum adsorption capacity for CO2 and possibly also the diffusion of CO2 into the alpha-cavities of INa12-xKxI-A. The adsorption of CH4 and N-2 on the other hand appeared to be controlled by the K+ ions blocking the eight-ring windows. The in situ PXRD study revealed that the positions of the extra-framework cations were displaced into the a-cavities of INa12(_)x,KxI-A on the adsorption of CO2 . For samples with a low content of K+, the repositioning of the cations was consistent with a mutual attraction with the adsorbed CO(2 )molecules.
  •  
7.
  • Rzepka, Przemyslaw, et al. (författare)
  • Site-Specific Adsorption of CO2 in Zeolite NaK‑A
  • 2018
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:47, s. 27005-27015
  • Tidskriftsartikel (refereegranskat)abstract
    • Zeolite |Na12|-A is a commercial adsorbent, and its CO2-over-N2(CH4) selectivity can be further enhanced kinetically by replacing Na+ in the 8-ring windows that control gas diffusion with large cations. In this study, samples of zeolite |Na12–xKx|-A with x = 0.0, 0.8, 2.0, and 3.0 were prepared, and the positions of adsorbed CO2 molecules were determined using in situ neutron powder diffraction through profile refinement. Adsorbed CO2 molecules were located at three different sites within the large α-cavities in the zeolite structure, revealing the interaction between the adsorbed CO2 and the host framework. The number of CO2 molecules at each site depends on CO2 pressure and follows site-specific CO2 isotherms described with a Langmuir model. Most of the CO2 molecules in zeolite |Na12–xKx|-A bridge two cations at neighboring 8-ring sites. These are relatively weakly physisorbed, and therefore, most of the working capacity of CO2 adsorption is related to this site. The CO2 molecules at the second most populated site are coordinated to a cation in the 8-ring plane. Some of them seemed to form chemical bonds with the O atoms of the framework as carbonate-like species and acted as chemisorption. The remaining minor fraction of CO2 is directly attracted by Na+ at the 6-rings. The different positioning of physisorbed CO2 and the presence of chemisorbed CO2 was confirmed by in situ infrared spectroscopy.
  •  
8.
  • Svensson, G., et al. (författare)
  • Influence of the presence of different alkali cations and the amount of Fe(CN)6 vacancies on CO2 adsorption on copper hexacyanoferrates
  • 2019
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 12:20
  • Tidskriftsartikel (refereegranskat)abstract
    • The CO2 adsorption on various Prussian blue analogue hexacyanoferrates was evaluated by thermogravimetric analysis. Compositions of prepared phases were verified by energydispersive X-ray spectroscopy, infra-red spectroscopy and powder X-ray diffraction. The influence of different alkali cations in the cubic Fm3m structures was investigated for nominal compositions A2/3Cu[Fe(CN)6]2/3 with A = vacant, Li, Na, K, Rb, Cs. The Rb and Cs compounds show the highest CO2 adsorption per unit cell, ~3.3 molecules of CO2 at 20 °C and 1 bar, while in terms of mmol/g the Na compound exhibits the highest adsorption capability, ~3.8 mmol/g at 20 °C and 1 bar. The fastest adsorption/desorption is exhibited by the A-cation free compound and the Li compound. The influence of the amount of Fe(CN)6 vacancies were assessed by determining the CO2 adsorption capabilities of Cu[Fe(CN)6]1/2 (Fm3m symmetry, nominally 50% vacancies), KCu[Fe(CN)6]3/4 (Fm3m symmetry, nominally 25% vacancies), and CsCu[Fe(CN)6] (I-4m2 symmetry, nominally 0% vacancies). Higher adsorption was, as expected, shown on compounds with higher vacancy concentrations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy