SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Warntjes M) "

Sökning: WFRF:(Warntjes M)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ouellette, R., et al. (författare)
  • Validation of Rapid Magnetic Resonance Myelin Imaging in Multiple Sclerosis
  • 2020
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 87:5, s. 710-724
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Magnetic resonance imaging (MRI) is essential for multiple sclerosis diagnostics but is conventionally not specific to demyelination. Myelin imaging is often hampered by long scanning times, complex postprocessing, or lack of clinical approval. This study aimed to assess the specificity, robustness, and clinical value of Rapid Estimation of Myelin for Diagnostic Imaging, a new myelin imaging technique based on time-efficient simultaneous T1/T2 relaxometry and proton density mapping in multiple sclerosis. Methods: Rapid myelin imaging was applied using 3T MRI ex vivo in 3 multiple sclerosis brain samples and in vivo in a prospective cohort of 71 multiple sclerosis patients and 21 age/sex-matched healthy controls, with scan–rescan repeatability in a subcohort. Disability in patients was assessed by the Expanded Disability Status Scale and the Symbol Digit Modalities Test at baseline and 2-year follow-up. Results: Rapid myelin imaging correlated with myelin-related stains (proteolipid protein immunostaining and Luxol fast blue) and demonstrated good precision. Multiple sclerosis patients had, relative to controls, lower normalized whole-brain and normal-appearing white matter myelin fractions, which correlated with baseline cognitive and physical disability. Longitudinally, these myelin fractions correlated with follow-up physical disability, even with correction for baseline disability. Interpretation: Rapid Estimation of Myelin for Diagnostic Imaging provides robust myelin quantification that detects diffuse demyelination in normal-appearing tissue in multiple sclerosis, which is associated with both cognitive and clinical disability. Because the technique is fast, with automatic postprocessing and US Food and Drug Administration/CE clinical approval, it can be a clinically feasible biomarker that may be suitable to monitor myelin dynamics and evaluate treatments aiming at remyelination.
  •  
3.
  • Kumar, Neil M., et al. (författare)
  • Synthetic MRI of the Knee: Phantom Validation and Comparison with Conventional MRI
  • 2018
  • Ingår i: Radiology. - : RADIOLOGICAL SOC NORTH AMERICA. - 0033-8419 .- 1527-1315. ; 289:2, s. 465-477
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To test the hypothesis that synthetic MRI of the knee generates accurate and repeatable quantitative maps and produces morphologic MR images with similar quality and detection rates of structural abnormalities than does conventional MRI. Materials and Methods: Data were collected prospectively between January 2017 and April 2018 and were retrospectively analyzed. An International Society for Magnetic Resonance in Medicine-National Institute of Standards and Technology phantom was used to determine the accuracy of T1, T2, and proton density (PD) quantification. Statistical models were applied for correction. Fifty-four participants (24 men, 30 women; mean age, 40 years; range, 18-62 years) underwent synthetic and conventional 3-T MRI twice on the same day. Fifteen of 54 participants (28%) repeated the protocol within 9 days. The intra-and interday agreements of quantitative cartilage measurements were assessed. Contrast-to-noise (CNR) ratios, image quality, and structural abnormalities were assessed on corresponding synthetic and conventional images. Statistical analyses included the Wilcoxon test, chi(2) test, and Cohen Kappa. P values less than or equal to.01 were considered to indicate a statistically significant difference. Results: Synthetic MRI quantification of T1, T2, and PD values had an overall model-corrected error margin of 0.8%. The synthetic MRI interday repeatability of articular cartilage quantification had native and model-corrected error margins of 3.3% and 3.5%, respectively. The cartilage-to-fluid CNR and menisci-to-fluid CNR was higher on synthetic than conventional MR images (P amp;lt;= .001, respectively). Synthetic MRI improved short-tau inversion recovery fat suppression (P amp;lt; .01). Intermethod agreements of structural abnormalities were good (kappa, 0.621-0.739). Conclusion: Synthetic MRI of the knee is accurate for T1, T2, and proton density quantification, and simultaneously generated morphologic MR images have detection rates of structural abnormalities similar to those of conventional MR images, with similar acquisition time. (c) RSNA, 2018
  •  
4.
  • Mangeat, G., et al. (författare)
  • Machine Learning and Multiparametric Brain MRI to Differentiate Hereditary Diffuse Leukodystrophy with Spheroids from Multiple Sclerosis
  • 2020
  • Ingår i: Journal of Neuroimaging. - : Blackwell Publishing Inc.. - 1051-2284 .- 1552-6569. ; 30:5, s. 674-682
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Hereditary diffuse leukoencephalopathy with spheroids (HDLS) and multiple sclerosis (MS) are demyelinating and neurodegenerative disorders that can be hard to distinguish clinically and radiologically. HDLS is a rare disorder compared to MS, which has led to occurrent misdiagnosis of HDLS as MS. That is problematic since their prognosis and treatment differ. Both disorders are investigated by MRI, which could help to identify patients with high probability of having HDLS, which could guide targeted genetic testing to confirm the HDLS diagnosis. METHODS: Here, we present a machine learning method based on quantitative MRI that can achieve a robust classification of HDLS versus MS. Four HDLS and 14 age-matched MS patients underwent a quantitative brain MRI protocol (synthetic MRI) at 3 Tesla (T) (scan time '7 minutes). We also performed a repeatability analysis of the predicting features to assess their generalizability by scanning a healthy control with five scan-rescans at 3T and 1.5T. RESULTS: Our predicting features were measured with an average confidence interval of 1.7% (P =.01), at 3T and 2.3% (P =.01) at 1.5T. The model gave a 100% correct classification of the cross-validation data when using 5-11 predicting features. When the maximum measurement noise was inserted in the model, the true positive rate of HDLS was 97.2%, while the true positive rate of MS was 99.6%. CONCLUSIONS: This study suggests that computer-assistance in combination with quantitative MRI may be helpful in aiding the challenging differential diagnosis of HDLS versus MS. 
  •  
5.
  • Warntjes, J.B.M., et al. (författare)
  • Novel method for rapid, simultaneous T1, T*2, and proton density quantification
  • 2007
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 0740-3194 .- 1522-2594. ; 57:3, s. 528-537
  • Tidskriftsartikel (refereegranskat)abstract
    • An imaging method called “quantification of relaxation times and proton density by twin-echo saturation-recovery turbo-field echo” (QRAPTEST) is presented as a means of quickly determining the longitudinal T1 and transverse T relaxation time and proton density (PD) within a single sequence. The method also includes an estimation of the B1 field inhomogeneity. High-resolution images covering large volumes can be achieved within clinically acceptable times of 5–10 min. The range of accuracy for determining T1, T, and PD values is flexible and can be optimized relative to any anticipated values. We validated the experimental results against existing methods, and provide a clinical example in which quantification of the whole brain using 1.5 mm3 voxels was achieved in less than 8 min.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy