SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Warsame A) "

Sökning: WFRF:(Warsame A)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adam, M., et al. (författare)
  • Antimalarial drug efficacy and resistance in malaria-endemic countries in HANMAT-PIAM_net countries of the Eastern Mediterranean Region 2016-2020: Clinical and genetic studies
  • 2023
  • Ingår i: Tropical Medicine & International Health. - 1360-2276. ; 28:10, s. 817-829
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction The World Health Organization recommends regular monitoring of the efficacy of nationally recommended antimalarial drugs. We present the results of studies on the efficacy of recommended antimalarials and molecular markers of artemisinin and partner resistance in Afghanistan, Pakistan, Somalia, Sudan and Yemen.Methods Single-arm prospective studies were conducted to evaluate the efficacy of artesunate-sulfadoxine-pyrimethamine (ASSP) in Afghanistan and Pakistan, artemether-lumefantrine (AL) in all countries, or dihydroartemisinin-piperaquine (DP) in Sudan for the treatment of Plasmodium falciparum. The efficacy of chloroquine (CQ) and AL for the treatment of Plasmodium vivax was evaluated in Afghanistan and Somalia, respectively. Patients were treated and monitored for 28 (CQ, ASSP and AL) or 42 (DP) days. Polymerase chain reaction (PCR)-corrected cure rate and parasite positivity rate at Day 3 were estimated. Mutations in the P. falciparum kelch 13 (Pfk13) gene and amplifications of plasmepsin (Pfpm2) and multidrug resistance-1 (Pfmdr-1) genes were also studied.Results A total of 1680 (249 for ASSP, 1079 for AL and 352 for DP) falciparum cases were successfully assessed. A PCR-adjusted ASSP cure rate of 100% was observed in Afghanistan and Pakistan. For AL, the cure rate was 100% in all but four sites in Sudan, where cure rates ranged from 92.1% to 98.8%. All but one patient were parasite-free at Day 3. For P. vivax, cure rates were 98.2% for CQ and 100% for AL. None of the samples from Afghanistan, Pakistan and Yemen had a Pfk13 mutation known to be associated with artemisinin resistance. In Sudan, the validated Pfk13 R622I mutation accounted for 53.8% (14/26) of the detected non-synonymous Pfk13 mutations, most of which were repeatedly detected in Gadaref. A prevalence of 2.7% and 9.3% of Pfmdr1 amplification was observed in Pakistan and Yemen, respectively.Conclusion High efficacy of ASSP, AL and DP in the treatment of uncomplicated falciparum infection and of CQ and AL in the treatment of P. vivax was observed in the respective countries. The repeated detection of a relatively high rate of Pfk13 R622I mutation in Sudan underscores the need for close monitoring of the efficacy of recommended ACTs, parasite clearance rates and Pfk13 mutations in Sudan and beyond. Registration numbers of the trials: ACTRN12622000944730 and ACTRN12622000873729 for Afghanistan, ACTRN12620000426987 and ACTRN12617001025325 for Pakistan, ACTRN12618001224213 for Somalia, ACTRN12617000276358, ACTRN12622000930785 and ACTRN12618001800213 for Sudan and ACTRN12617000283370 for Yemen.
  •  
2.
  • Moser, K. A., et al. (författare)
  • Describing the current status of Plasmodium falciparum population structure and drug resistance within mainland Tanzania using molecular inversion probes
  • 2021
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 30:1, s. 100-113
  • Tidskriftsartikel (refereegranskat)abstract
    • High-throughput Plasmodium genomic data is increasingly useful in assessing prevalence of clinically important mutations and malaria transmission patterns. Understanding parasite diversity is important for identification of specific human or parasite populations that can be targeted by control programmes, and to monitor the spread of mutations associated with drug resistance. An up-to-date understanding of regional parasite population dynamics is also critical to monitor the impact of control efforts. However, this data is largely absent from high-burden nations in Africa, and to date, no such analysis has been conducted for malaria parasites in Tanzania countrywide. To this end, over 1,000 P. falciparum clinical isolates were collected in 2017 from 13 sites in seven administrative regions across Tanzania, and parasites were genotyped at 1,800 variable positions genome-wide using molecular inversion probes. Population structure was detectable among Tanzanian P. falciparum parasites, approximately separating parasites from the northern and southern districts and identifying genetically admixed populations in the north. Isolates from nearby districts were more likely to be genetically related compared to parasites sampled from more distant districts. Known drug resistance mutations were seen at increased frequency in northern districts (including two infections carrying pfk13-R561H), and additional variants with undetermined significance for antimalarial resistance also varied by geography. Malaria Indicator Survey (2017) data corresponded with genetic findings, including average region-level complexity-of-infection and malaria prevalence estimates. The parasite populations identified here provide important information on extant spatial patterns of genetic diversity of Tanzanian parasites, to which future surveys of genetic relatedness can be compared. © 2020 John Wiley & Sons Ltd
  •  
3.
  • Warsame, Marian, et al. (författare)
  • High therapeutic efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated falciparum malaria in Somalia
  • 2019
  • Ingår i: Malaria Journal. - : Springer Science and Business Media LLC. - 1475-2875. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DHA/PPQ) are the recommended first- and second-line treatments, respectively, for uncomplicated falciparum malaria in Somalia. The studies reported here were conducted to assess the efficacy of these artemisinin-based combinations and the mutations in Plasmodium falciparum K13-propeller (Pfk13) domain and amplification in Pfplasmepsin 2 (Pfpm2) gene in Somalia. Methods: One-arm prospective studies were conducted to assess the clinical and parasitological responses to DHA/PPQ and AL at two sites in 2016 and 2017, respectively, using the standard WHO protocol. The patterns of molecular markers associated with artemisinin and PPQ resistance were investigated for the first time in Somalia. Results: A total of 339 patients were enrolled with 139 for AL and 200 for DHA/PPQ. With AL, no parasite recurrence was observed among patients treated at either site, corresponding to 100% clinical and parasitological responses. For DHA-PPQ, an adequate clinical and parasitological response rate > 97% was observed. All study patients on both treatments at both sites were parasite-free on day 3. Of the 138 samples with interpretable results for the polymorphism in Pfk13, only one (0.7%), from Bosaso, contained a non-synonymous mutation (R622I), which is not one of the known markers of artemisinin resistance. No Pfpm2 amplification was observed among the 135 samples with interpretable results. Conclusions: AL and DHA/PPQ were highly effective in the treatment of uncomplicated falciparum malaria, and there was no evidence of resistance to artemisinin or PPQ. These two combinations are thus relevant in the chemotherapeutic strategy for malaria control in Somalia.
  •  
4.
  • Stokes, B. H., et al. (författare)
  • Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness
  • 2021
  • Ingår i: eLife. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561 H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561 H, along with C580Y and M5791, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M5791 cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561 H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561 H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing of point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.
  •  
5.
  • Ishengoma, Deus S., et al. (författare)
  • Microsatellites reveal high polymorphism and high potential for use in anti-malarial efficacy studies in areas with different transmission intensities in mainland Tanzania
  • 2024
  • Ingår i: MALARIA JOURNAL. - : Springer Nature. - 1475-2875. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Tanzania is currently implementing therapeutic efficacy studies (TES) in areas of varying malaria transmission intensities as per the World Health Organization (WHO) recommendations. In TES, distinguishing reinfection from recrudescence is critical for the determination of anti-malarial efficacy. Recently, the WHO recommended genotyping polymorphic coding genes, merozoite surface proteins 1 and 2 (msp1 and msp2), and replacing the glutamate-rich protein (glurp) gene with one of the highly polymorphic microsatellites in Plasmodium falciparum to adjust the efficacy of antimalarials in TES. This study assessed the polymorphisms of six neutral microsatellite markers and their potential use in TES, which is routinely performed in Tanzania. Methods Plasmodium falciparum samples were obtained from four TES sentinel sites, Kibaha (Pwani), Mkuzi (Tanga), Mlimba (Morogoro) and Ujiji (Kigoma), between April and September 2016. Parasite genomic DNA was extracted from dried blood spots on filter papers using commercial kits. Genotyping was done using six microsatellites (Poly-alpha, PfPK2, TA1, C3M69, C2M34 and M2490) by capillary method, and the data were analysed to determine the extent of their polymorphisms and genetic diversity at the four sites. Results Overall, 83 (88.3%) of the 94 samples were successfully genotyped (with positive results for >= 50.0% of the markers), and > 50.0% of the samples (range = 47.6-59.1%) were polyclonal, with a mean multiplicity of infection (MOI) ranging from 1.68 to 1.88 among the four sites. There was high genetic diversity but limited variability among the four sites based on mean allelic richness (R-S = 7.48, range = 7.27-8.03, for an adjusted minimum sample size of 18 per site) and mean expected heterozygosity (H-e = 0.83, range = 0.80-0.85). Cluster analysis of haplotypes using STRUCTURE, principal component analysis, and pairwise genetic differentiation (F-ST) did not reveal population structure or clustering of parasites according to geographic origin. Of the six markers, Poly-alpha was the most polymorphic, followed by C2M34, TA1 and C3M69, while M2490 was the least polymorphic. Conclusion Microsatellite genotyping revealed high polyclonality and genetic diversity but no significant population structure. Poly-alpha, C2M34, TA1 and C3M69 were the most polymorphic markers, and Poly-alpha alone or with any of the other three markers could be adopted for use in TES in Tanzania.
  •  
6.
  •  
7.
  • Uwimana, A., et al. (författare)
  • Emergence and clonal expansion of in vitro artemisinin-resistantPlasmodium falciparum kelch13R561H mutant parasites in Rwanda
  • 2020
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 26, s. 1602-1608
  • Tidskriftsartikel (refereegranskat)abstract
    • Artemisinin resistance (delayedP. falciparumclearance following artemisinin-based combination therapy), is widespread across Southeast Asia but to date has not been reported in Africa(1-4). Here we genotyped theP. falciparum K13(Pfkelch13) propeller domain, mutations in which can mediate artemisinin resistance(5,6), in pretreatment samples collected from recent dihydroarteminisin-piperaquine and artemether-lumefantrine efficacy trials in Rwanda(7). While cure rates were >95% in both treatment arms, thePfkelch13R561H mutation was identified in 19 of 257 (7.4%) patients at Masaka. Phylogenetic analysis revealed the expansion of an indigenous R561H lineage. Gene editing confirmed that this mutation can drive artemisinin resistance in vitro. This study provides evidence for the de novo emergence ofPfkelch13-mediated artemisinin resistance in Rwanda, potentially compromising the continued success of antimalarial chemotherapy in Africa. Identification in Rwanda of mutations inPlasmodium falciparumcapable of conferring in vitro resistance to artemisinin, an essential medicine for the treatment of malaria, underscore the crucial need for surveillance in Africa to safeguard efficacy of life-saving therapies.
  •  
8.
  •  
9.
  • Bakari, Catherine, et al. (författare)
  • Trends of Plasmodium falciparum molecular markers associated with resistance to artemisinins and reduced susceptibility to lumefantrine in Mainland Tanzania from 2016 to 2021
  • 2024
  • Ingår i: MALARIA JOURNAL. - 1475-2875. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. Methods A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). Results Sequencing success was >= 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. Conclusion This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy