SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Warvsten Anna) "

Sökning: WFRF:(Warvsten Anna)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Warvsten, Anna, et al. (författare)
  • Islet autoantibodies present in association with Ljungan virus infection in bank voles (Myodes glareolus) in northern Sweden
  • 2017
  • Ingår i: Journal of Medical Virology. - : Wiley. - 1096-9071 .- 0146-6615. ; 89:1, s. 24-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Bank voles are known reservoirs for Puumala hantavirus and probably also for Ljungan virus (LV), a suggested candidate parechovirus in type 1 diabetes etiology and pathogenesis. The aim of this study was to determine whether wild bank voles had been exposed to LV and if exposure associated to autoantibodies against insulin (IAA), glutamic acid decarboxylase 65 (GADA), or islet autoantigen-2 (IA-2A). Serum samples from bank voles (Myodes glareolus) captured in early summer or early winter of 1997 and 1998, respectively, were analyzed in radio binding assays for antibodies against Ljungan virus (LVA) and Puumala virus (PUUVA) as well as for IAA, GADA, and IA-2A. LVA was found in 25% (189/752), IAA in 2.5% (18/723), GADA in 2.6% (15/615), and IA-2A in 2.5% (11/461) of available bank vole samples. LVA correlated with both IAA (P = 0.007) and GADA (P < 0.001), but not with IA-2A (P = 0.999). There were no correlations with PUUVA, detected in 17% of the bank voles. Compared to LVA negative bank voles, LVA positive animals had higher levels of both IAA (P = 0.002) and GADA (P < 0.001), but not of IA-2A (P = 0.205). Levels of LVA as well as IAA and GADA were higher in samples from bank voles captured in early summer. In conclusion, LVA was detected in bank voles and correlated with both IAA and GADA but not with IA-2A. These observations suggest that exposure to LV may be associated with islet autoimmunity. It remains to be determined if islet autoantibody positive bank voles may develop diabetes in the wild. J. Med. Virol. 89:24-31, 2017. © 2016 Wiley Periodicals, Inc.
  •  
2.
  • Säll, Johanna, et al. (författare)
  • Salt-inducible kinases are required for glucose uptake and insulin signaling in human adipocytes
  • 2023
  • Ingår i: Obesity. - 1930-739X. ; 31:10, s. 2515-2529
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Salt-inducible kinase 2 (SIK2) is abundantly expressed in adipocytes and downregulated in adipose tissue from individuals with obesity or insulin resistance. The main aims of this work were to investigate the involvement of SIKs in the regulation of glucose uptake in primary mature human adipocytes and to identify mechanisms underlying this regulation.METHODS: Primary mature adipocytes were isolated from human, rat, or mouse adipose tissue and treated with pan-SIK inhibitors. Adipocytes isolated from wild type, ob/ob, and SIK2 knockout mice were also used. Glucose uptake was examined by glucose tracer assay. The insulin signaling pathway was monitored by Western blotting, co-immunoprecipitation, and total internal reflection fluorescence microscopy.RESULTS: This study demonstrates that SIK2 is downregulated in obese ob/ob mice and that SIK activity is required for intact glucose uptake in primary human and mouse adipocytes. The underlying mechanism involves direct effects on the insulin signaling pathway, likely at the level of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation or breakdown. Moreover, lack of SIK2 alone is sufficient to attenuate glucose uptake in mouse adipocytes.CONCLUSIONS: SIK2 is required for insulin action in human adipocytes, and the mechanism includes direct effects on the insulin signaling pathway.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy