SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wauben M. H. M.) "

Sökning: WFRF:(Wauben M. H. M.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Reiner, A. T., et al. (författare)
  • Concise Review: Developing Best-Practice Models for the Therapeutic Use of Extracellular Vesicles
  • 2017
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 6:8
  • Forskningsöversikt (refereegranskat)abstract
    • Growing interest in extracellular vesicles (EVs, including exosomes and microvesicles) as therapeutic entities, particularly in stem cell-related approaches, has underlined the need for standardization and coordination of development efforts. Members of the International Society for Extracellular Vesicles and the Society for Clinical Research and Translation of Extracellular Vesicles Singapore convened a Workshop on this topic to discuss the opportunities and challenges associated with development of EV-based therapeutics at the preclinical and clinical levels. This review outlines topic-specific action items that, if addressed, will enhance the development of best-practice models for EV therapies.
  •  
3.
  • Yáñez-Mó, María, et al. (författare)
  • Biological properties of extracellular vesicles and their physiological functions.
  • 2015
  • Ingår i: Journal of extracellular vesicles. - : Wiley. - 2001-3078. ; 4
  • Forskningsöversikt (refereegranskat)abstract
    • In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.
  •  
4.
  • Cheung, K. H., et al. (författare)
  • Extending gene ontology in the context of extracellular RNA and vesicle communication
  • 2016
  • Ingår i: Journal of Biomedical Semantics. - : Springer Science and Business Media LLC. - 2041-1480. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: To address the lack of standard terminology to describe extracellular RNA (exRNA) data/metadata, we have launched an inter-community effort to extend the Gene Ontology (GO) with subcellular structure concepts relevant to the exRNA domain. By extending GO in this manner, the exRNA data/metadata will be more easily annotated and queried because it will be based on a shared set of terms and relationships relevant to extracellular research. Methods: By following a consensus-building process, we have worked with several academic societies/consortia, including ERCC, ISEV, and ASEMV, to identify and approve a set of exRNA and extracellular vesicle-related terms and relationships that have been incorporated into GO. In addition, we have initiated an ongoing process of extractions of gene product annotations associated with these terms from Vesiclepedia and ExoCarta, conversion of the extracted annotations to Gene Association File (GAF) format for batch submission to GO, and curation of the submitted annotations by the GO Consortium. As a use case, we have incorporated some of the GO terms into annotations of samples from the exRNA Atlas and implemented a faceted search interface based on such annotations. Results: We have added 7 new terms and modified 9 existing terms (along with their synonyms and relationships) to GO. Additionally, 18,695 unique coding gene products (mRNAs and proteins) and 963 unique non-coding gene products (ncRNAs) which are associated with the terms: "extracellular vesicle", "extracellular exosome", "apoptotic body", and "microvesicle" were extracted from ExoCarta and Vesiclepedia. These annotations are currently being processed for submission to GO. Conclusions: As an inter-community effort, we have made a substantial update to GO in the exRNA context. We have also demonstrated the utility of some of the new GO terms for sample annotation and metadata search.
  •  
5.
  • Welsh, Joshua A., et al. (författare)
  • Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
  • 2024
  • Ingår i: Journal of Extracellular Vesicles. - : John Wiley and Sons Inc. - 2001-3078. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
  •  
6.
  • Pathan, M., et al. (författare)
  • A novel community driven software for functional enrichment analysis of extracellular vesicles data
  • 2017
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioinformatics tools are imperative for the in depth analysis of heterogeneous high-throughput data. Most of the software tools are developed by specific laboratories or groups or companies wherein they are designed to perform the required analysis for the group. However, such software tools may fail to capture "what the community needs in a tool". Here, we describe a novel community-driven approach to build a comprehensive functional enrichment analysis tool. Using the existing FunRich tool as a template, we invited researchers to request additional features and/or changes. Remarkably, with the enthusiastic participation of the community, we were able to implement 90% of the requested features. FunRich enables plugin for extracellular vesicles wherein users can download and analyse data from Vesiclepedia database. By involving researchers early through community needs software development, we believe that comprehensive analysis tools can be developed in various scientific disciplines.
  •  
7.
  • Paolini, Lucia, et al. (författare)
  • Large-scale production of extracellular vesicles: Report on the “massivEVs” ISEV workshop
  • 2022
  • Ingår i: Journal of Extracellular Biology. - : Wiley. - 2768-2811. ; 1:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs) large-scale production is a crucial point for the translation of EVs from discovery to application of EV-based products. In October 2021, the International Society for Extracellular Vesicles (ISEV), along with support by the FET-OPEN projects, “The Extracellular Vesicle Foundry” (evFOUNDRY) and “Extracellular vesicles from a natural source for tailor-made nanomaterials” (VES4US), organized a workshop entitled “massivEVs” to discuss the potential challenges for translation of EV-based products. This report gives an overview of the topics discussed during “massivEVs”, the most important points raised, and the points of consensus reached after discussion among academia and industry representatives. Overall, the review of the existing EV manufacturing, upscaling challenges and directions for their resolution highlighted in the workshop painted an optimistic future for the expanding EV field.
  •  
8.
  • Clayton, Aled, et al. (författare)
  • Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017
  • 2018
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 7
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles. This report summarises the presentations and activities of the ISEV Workshop on extracellular vesicle biomarkers held in Birmingham, UK during December 2017. Among the key messages was broad agreement about the importance of biospecimen science. Much greater attention needs to be paid towards the provenance of collected samples. The workshop also highlighted clear gaps in our knowledge about pre-analytical factors that alter extracellular vesicles (EVs). The future utility of certified standards for credentialing of instruments and software, to analyse EV and for tracking the influence of isolation steps on the structure and content of EVs were also discussed. Several example studies were presented, demonstrating the potential utility for EVs in disease diagnosis, prognosis, longitudinal serial testing and stratification of patients. The conclusion of the workshop was that more effort focused on pre-analytical issues and benchmarking of isolation methods is needed to strengthen collaborations and advance more effective biomarkers.
  •  
9.
  • Ridolfi, Andrea, et al. (författare)
  • Electrostatic interactions control the adsorption of extracellular vesicles onto supported lipid bilayers
  • 2023
  • Ingår i: Journal of Colloid and Interface Science. - 0021-9797. ; 650, s. 883-891
  • Tidskriftsartikel (refereegranskat)abstract
    • Communication between cells located in different parts of an organism is often mediated by membrane-enveloped nanoparticles, such as extracellular vesicles (EVs). EV binding and cell uptake mechanisms depend on the heterogeneous composition of the EV membrane. From a colloidal perspective, the EV membrane interacts with other biological interfaces via both specific and non-specific interactions, where the latter include long-ranged electrostatic and van der Waals forces, and short-ranged repulsive “steric-hydration” forces. While electrostatic forces are generally exploited in most EV immobilization protocols, the roles played by various colloidal forces in controlling EV adsorption on surfaces have not yet been thoroughly addressed. In the present work, we study the adsorption of EVs onto supported lipid bilayers (SLBs) carrying different surface charge densities using a combination of quartz crystal microbalance with dissipation monitoring (QCM-D) and confocal laser scanning microscopy (CLSM). We demonstrate that EV adsorption onto lipid membranes can be controlled by varying the strength of electrostatic forces and we theoretically describe the observed phenomena within the framework of nonlinear Poisson-Boltzmann theory. Our modelling results confirm the experimental observations and highlight the crucial role played by attractive electrostatics in EV adsorption onto lipid membranes. They furthermore show that simplified theories developed for model lipid systems can be successfully applied to the study of their biological analogues and provide new fundamental insights into EV-membrane interactions with potential use in developing novel EV separation and immobilization strategies.
  •  
10.
  • Soekmadji, C., et al. (författare)
  • Towards mechanisms and standardization in extracellular vesicle and extracellular RNA studies: results of a worldwide survey
  • 2018
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery that extracellular vesicles (EVs) can transfer functional extracellular RNAs (exRNAs) between cells opened new avenues into the study of EVs in health and disease. Growing interest in EV RNAs and other forms of exRNA has given rise to research programmes including but not limited to the Extracellular RNA Communication Consortium (ERCC) of the US National Institutes of Health. In 2017, the International Society for Extracellular Vesicles (ISEV) administered a survey focusing on EVs and exRNA to canvass-related views and perceived needs of the EV research community. Here, we report the results of this survey. Overall, respondents emphasized opportunities for technical developments, unraveling of molecular mechanisms and standardization of methodologies to increase understanding of the important roles of exRNAs in the broader context of EV science. In conclusion, although exRNA biology is a relatively recent emphasis in the EV field, it has driven considerable interest and resource commitment. The ISEV community looks forward to continuing developments in the science of exRNA and EVs, but without excluding other important molecular constituents of EVs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy