SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wegenast Braun Bettina) "

Sökning: WFRF:(Wegenast Braun Bettina)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klingstedt, Therése, et al. (författare)
  • Distinct Spacing Between Anionic Groups: An Essential Chemical Determinant for Achieving Thiophene-Based Ligands to Distinguish Beta-Amyloid or Tau Polymorphic Aggregates
  • 2015
  • Ingår i: Chemistry - A European Journal. - : Wiley-VCH Verlag. - 0947-6539 .- 1521-3765. ; 21:25, s. 9072-9082
  • Tidskriftsartikel (refereegranskat)abstract
    • The accumulation of protein aggregates is associated with many devastating neurodegenerative diseases and the existence of distinct aggregated morphotypes has been suggested to explain the heterogeneous phenotype reported for these diseases. Thus, the development of molecular probes able to distinguish such morphotypes is essential. We report an anionic tetrameric oligothiophene compound that can be utilized for spectral assignment of different morphotypes of -amyloid or tau aggregates present in transgenic mice at distinct ages. The ability of the ligand to spectrally distinguish between the aggregated morphotypes was reduced when the spacing between the anionic substituents along the conjugated thiophene backbone was altered, which verified that specific molecular interactions between the ligand and the protein aggregate are necessary to detect aggregate polymorphism. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between different morphotypes of protein aggregates.
  •  
2.
  • Mahler, Jasmin, et al. (författare)
  • Endogenous murine A beta increases amyloid deposition in APP23 but not in APPPS1 transgenic mice
  • 2015
  • Ingår i: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 36:7, s. 2241-2247
  • Tidskriftsartikel (refereegranskat)abstract
    • Endogenous murine amyloid-beta peptide (A beta) is expressed in most A beta precursor protein (APP) transgenic mouse models of Alzheimers disease but its contribution to beta-amyloidosis remains unclear. We demonstrate similar to 35% increased cerebral A beta load in APP23 transgenic mice compared with age-matched APP23 mice on an App-null background. No such difference was found for the much faster A beta-depositing APPPS1 transgenic mouse model between animals with or without the murine App gene. Nevertheless, both APP23 and APPPS1 mice codeposited murine A beta, and immunoelectron microscopy revealed a tight association of murine A beta with human A beta fibrils. Deposition of murine A beta was considerably less efficient compared with the deposition of human A beta indicating a lower amyloidogenic potential of murine A beta in vivo. The amyloid dyes Pittsburgh Compound-B and pentamer formyl thiophene acetic acid did not differentiate between amyloid deposits consisting of human A beta and deposits of mixed human-murine A beta. Our data demonstrate a differential effect of murine A beta on human A beta deposition in different APP transgenic mice. The mechanistically complex interaction of human and mouse A beta may affect pathogenesis of the models and should be considered when models are used for translational preclinical studies.
  •  
3.
  • Novotny, Renata, et al. (författare)
  • Conversion of Synthetic A beta to In Vivo Active Seeds and Amyloid Plaque Formation in a Hippocampal Slice Culture Model
  • 2016
  • Ingår i: Journal of Neuroscience. - : SOC NEUROSCIENCE. - 0270-6474 .- 1529-2401. ; 36:18, s. 5084-5093
  • Tidskriftsartikel (refereegranskat)abstract
    • The aggregation of amyloid-beta peptide (A beta) inbrain is an early event and hallmark of Alzheimers disease (AD). We combined the advantages of in vitro and in vivo approaches to study cerebral beta-amyloidosis by establishing a long-term hippocampal slice culture(HSC) model. While no A beta deposition was noted in untreated HSCs of postnatal A beta precursor protein transgenic (APP tg) mice, A beta deposition emerged in HSCs when cultures were treated once with brain extract from aged APP tg mice and the culture medium was continuously supplemented with synthetic A beta. Seeded A beta deposition was also observed under the same conditions in HSCs derived from wild-type or App-null mice but in no comparable way when HSCs were fixed before cultivation. Both the nature of the brain extract and the synthetic A beta species determined the conformational characteristics of HSCA beta deposition. HSCA beta deposits induced a microglia response, spine loss, and neuritic dystrophy but no obvious neuron loss. Remarkably, in contrast to in vitro aggregated synthetic A beta, homogenates of A beta deposits containing HSCs induced cerebral beta-amyloidosis upon intracerebral inoculation into young APP tg mice. Our results demonstrate that a living cellular environment promotes the seeded conversion of synthetic A beta into a potent in vivo seeding-active form.
  •  
4.
  •  
5.
  • Nyström, Sofie, et al. (författare)
  • Evidence for Age-Dependent in Vivo Conformational Rearrangement within A beta Amyloid Deposits
  • 2013
  • Ingår i: ACS Chemical Biology. - : American Chemical Society. - 1554-8929 .- 1554-8937. ; 8:6, s. 1128-1133
  • Tidskriftsartikel (refereegranskat)abstract
    • Deposition of aggregated A beta peptide in the brain is one of the major hallmarks of Alzheimers disease. Using a combination of two structurally different, but related, hypersensitive fluorescent amyloid markers, LCOs, reporting on separate ultrastructural elements, we show that conformational rearrangement occurs within A beta plaques of transgenic mouse models as the animals age. This important mechanistic insight should aid the design and evaluation of experiments currently using plaque load as readout.
  •  
6.
  • Parvin, Farjana, et al. (författare)
  • Divergent Age-Dependent Conformational Rearrangement within Aβ Amyloid Deposits in APP23, APPPS1, and AppNL-F Mice
  • 2024
  • Ingår i: ACS Chemical Neuroscience. - : AMER CHEMICAL SOC. - 1948-7193. ; 15:10, s. 2058-2069
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid plaques composed of fibrils of misfolded A beta peptides are pathological hallmarks of Alzheimer's disease (AD). A beta fibrils are polymorphic in their tertiary and quaternary molecular structures. This structural polymorphism may carry different pathologic potencies and can putatively contribute to clinical phenotypes of AD. Therefore, mapping of structural polymorphism of A beta fibrils and structural evolution over time is valuable to understanding disease mechanisms. Here, we investigated how A beta fibril structures in situ differ in A beta plaque of different mouse models expressing familial mutations in the A beta PP gene. We imaged frozen brains with a combination of conformation-sensitive luminescent conjugated oligothiophene (LCO) ligands and A beta-specific antibodies. LCO fluorescence mapping revealed that mouse models APP23, APPPS1, and App(NL-F) have different fibril structures within A beta-amyloid plaques depending on the A beta PP-processing genotype. Co-staining with A beta-specific antibodies showed that individual plaques from APP23 mice expressing A beta PP Swedish mutation have two distinct fibril polymorph regions of core and corona. The plaque core is predominantly composed of compact A beta 40 fibrils, and the corona region is dominated by diffusely packed A beta 40 fibrils. Conversely, the A beta PP knock-in mouse App(NL-F), expressing the A beta PP Iberian mutation along with Swedish mutation has tiny, cored plaques consisting mainly of compact A beta 42 fibrils, vastly different from APP23 even at elevated age up to 21 months. Age-dependent polymorph rearrangement of plaque cores observed for APP23 and APPPS1 mice >12 months, appears strongly promoted by A beta 40 and was hence minuscule in App(NL-F). These structural studies of amyloid plaques in situ can map disease-relevant fibril polymorph distributions to guide the design of diagnostic and therapeutic molecules.
  •  
7.
  • Tanrioever, Gaye, et al. (författare)
  • Prominent microglial inclusions in transgenic mouse models of alpha-synucleinopathy that are distinct from neuronal lesions
  • 2020
  • Ingår i: Acta neuropathologica communications. - : BMC. - 2051-5960. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpha-synucleinopathies are a group of progressive neurodegenerative disorders, characterized by intracellular deposits of aggregated alpha-synuclein (alpha S). The clinical heterogeneity of these diseases is thought to be attributed to conformers (or strains) of alpha S but the contribution of inclusions in various cell types is unclear. The aim of the present work was to study alpha S conformers among different transgenic (TG) mouse models of alpha-synucleinopathies. To this end, four different TG mouse models were studied (Prnp-h[A53T]alpha S; Thy1-h[A53T]alpha S; Thy1-h[A30P]alpha S; Thy1-m alpha S) that overexpress human or murine alpha S and differed in their age-of-symptom onset and subsequent disease progression. Postmortem analysis of end-stage brains revealed robust neuronal alpha S pathology as evidenced by accumulation of alpha S serine 129 (p-alpha S) phosphorylation in the brainstem of all four TG mouse lines. Overall appearance of the pathology was similar and only modest differences were observed among additionally affected brain regions. To study alpha S conformers in these mice, we used pentameric formyl thiophene acetic acid (pFTAA), a fluorescent dye with amyloid conformation-dependent spectral properties. Unexpectedly, besides the neuronal alpha S pathology, we also found abundant pFTAA-positive inclusions in microglia of all four TG mouse lines. These microglial inclusions were also positive for Thioflavin S and showed immunoreactivity with antibodies recognizing the N-terminus of alpha S, but were largely p-alpha S-negative. In all four lines, spectral pFTAA analysis revealed conformational differences between microglia and neuronal inclusions but not among the different mouse models. Concomitant with neuronal lesions, microglial inclusions were already present at presymptomatic stages and could also be induced by seeded alpha S aggregation. Although nature and significance of microglial inclusions for human alpha-synucleinopathies remain to be clarified, the previously overlooked abundance of microglial inclusions in TG mouse models of alpha-synucleinopathy bears importance for mechanistic and preclinical-translational studies.
  •  
8.
  • Wegenast-Braun, Bettina M., et al. (författare)
  • Spectral Discrimination of Cerebral Amyloid Lesions after Peripheral Application of Luminescent Conjugated Oligothiophenes
  • 2012
  • Ingår i: American Journal of Pathology. - : Elsevier. - 0002-9440 .- 1525-2191. ; 181:6, s. 1953-1960
  • Tidskriftsartikel (refereegranskat)abstract
    • In vivo imaging of pathological protein aggregates provides essential knowledge of the kinetics and implications of these lesions in the progression of proteopathies, such as Alzheimer disease. Luminescent conjugated oligothiophenes are amyloid-specific ligands that bind and spectrally distinguish different types of amyloid aggregates. Herein, we report that heptamer formyl thiophene acetic acid (hFTAA) passes the blood-brain barrier after systemic administration and specifically binds to extracellular beta-amyloid deposits in the brain parenchyma (A beta plaques) and in the vasculature (cerebral beta-amyloid angiopathy) of beta-amyloid precursor protein transgenic APP23 mice. Moreover, peripheral application of hFIAA also stained intracellular lesions of hyperphosphorylated Tau protein in P301S Tau transgenic mice. Spectral profiling of all three amyloid types was acquired ex vivo using two-photon excitation. hFTAA revealed a distinct shift in its emission spectra when bound to A beta plaques versus Tau lesions. Furthermore, a spectral shift was observed for A beta plaques versus cerebral beta-amyloid angiopathy, indicating that different amyloid types and structural variances of a specific amyloid type can be distinguished. In conclusion, by adding spectral signatures to amyloid lesions, our results pave the way for a new area of in vivo amyloid imaging, allowing in vivo differentiation of amyloid (sub)types and monitoring changes of their structure/composition over time. (Am J Pathol 2012, 181: 1953-1960 http://dx.doi.org/10.1016/j.ajpath.2012.08.031)
  •  
9.
  • Zhang, Jun, et al. (författare)
  • Phenolic Bis-styrylbenzo[c]-1,2,5-thiadiazoles as Probes for Fluorescence Microscopy Mapping of A beta Plaque Heterogeneity
  • 2019
  • Ingår i: Journal of Medicinal Chemistry. - : AMER CHEMICAL SOC. - 0022-2623 .- 1520-4804. ; 62:4, s. 2038-2048
  • Tidskriftsartikel (refereegranskat)abstract
    • A fluorescent bis-styryl-benzothiadiazole (BTD) with carboxylic acid functional groups (X-34/Congo red analogue) showed lower binding affinity toward A beta 1-42 and A beta 1-40 fibrils than its neutral analogue. Hence, variable patterns of neutral OH-substituted bis-styryl-BTDs were generated. All bis-styryl-BTDs showed higher binding affinity to A beta 1-42 fibrils than to A beta 1-40 fibrils. The para-OH on the phenyl rings was beneficial for binding affinity while a meta-OH decreased the affinity. Differential staining of transgenic mouse A beta amyloid plaque cores compared to peripheral coronas using neutral compared to anionic bis-styryl ligands indicate differential recognition of amyloid polymorphs. Hyperspectral imaging of transgenic mouse A beta plaque stained with uncharged para-hydroxyl substituted bis-styryl-BTD implicated differences in binding site polarity of polymorphic amyloid plaque. Most properties of the corresponding bis-styryl-BTD were retained with a rigid alkyne linker rendering a probe insensitive to cis trans isomerization. These new BTDbased ligands are promising probes for spectral imaging of different A beta fibril polymorphs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy