SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wegner Gerhard) "

Sökning: WFRF:(Wegner Gerhard)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gstrein, Chiara, et al. (författare)
  • Solvatochromism of dye-labeled dendronized polymers of generation numbers 1–4: comparison to dendrimers
  • 2016
  • Ingår i: Chemical Science. - 2041-6539. ; :7, s. 4644-4652
  • Tidskriftsartikel (refereegranskat)abstract
    • Two series of dendronized polymers (DPs) of generations g = 1–4 with different levels of dendritic substitution (low and high) and a solvatochromic probe at g = 1 level are used to study their swelling behavior in a collection of solvents largely differing in polarity as indicated by the Kamlet–Taft parameters. This is done by measuring the UV-Vis spectra of all samples in all solvents and determining the longest wavelength absorptions (λmax). The λmax values fall into a range defined by the extreme situations, when the solvatochromic probe is either fully surrounded by solvent or completely shielded against it. The former situation is achieved in a model compound and the latter situation is believed to be reached when in a poor solvent the dendritic shell around the backbone is fully collapsed. We observe that solvent penetration into the interior of the DPs decreases with increasing g and does so faster for the more highly dendritically substituted series than for the less highly substituted one. Interestingly, the swelling of the more highly substituted DP series already at the g = 4 level has decreased to approximately 20% of that at the g = 1 level which supports an earlier proposal that high g DPs can be viewed as nano-sized molecular objects. Furthermore, when comparing these two DP series with a g = 1–6 series of dendrimers investigated by Fréchet et al. it becomes evident that even the less substituted series of DPs is much less responsive to solvent changes as assessed by the solvatochromic probe than the dendrimers, suggesting the branches around the (polymeric) core in DPs to be more densely packed compared to those in dendrimers, thus, establishing a key difference between these two dendritic macromolecules.
  •  
2.
  • Schlueter, A. Dieter, et al. (författare)
  • Dendronized Polymers: Molecular Objects between Conventional Linear Polymers and Colloidal Particles
  • 2014
  • Ingår i: ACS Macro Letters. - : American Chemical Society (ACS). - 2161-1653. ; 3:10, s. 991-998
  • Tidskriftsartikel (refereegranskat)abstract
    • The term molecular object (MO) is introduced to describe single, shape persistent macromolecules that retain their form and mesoscopic dimensions irrespective of solvent quality and adsorption onto a surface. The concept is illustrated with results concerning homologous series of dendronized polymers (DP). In particular, we discuss imaging experiments quantifying deformation upon adsorption, defect characterization, and atomistic molecular dynamics simulations of DP structure. We argue that MOs such as high generation DP, with their large dimensions and high internal density, provide an opportunity to address fundamental questions regarding the onset of bulk-like behavior in single molecules. Illustrative examples of such questions concern the smallest MO exhibiting a glass transition, glassy behavior or a constant bulk density. The characteristics of DP MO are highlighted by comparison to polymer beads, polymeric micelles, globular proteins, and carbon nanotubes. We discuss future research directions and speculate on possibilities involving multiarmed and toroid DP and the effect of DP on friction and rheology, as well as their utilization for nanoconstruction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy