SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weis Florian) "

Sökning: WFRF:(Weis Florian)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grasse, Patricia, et al. (författare)
  • GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater
  • 2017
  • Ingår i: Journal of Analytical Atomic Spectrometry. - : Royal Society of Chemistry (RSC). - 0267-9477 .- 1364-5544. ; 32:3, s. 562-578
  • Tidskriftsartikel (refereegranskat)abstract
    • The first inter-calibration study of the stable silicon isotope composition of dissolved silicic acid in seawater, delta Si-30(OH)(4), is presented as a contribution to the international GEOTRACES program. Eleven laboratories from seven countries analyzed two seawater samples from the North Pacific subtropical gyre (Station ALOHA) collected at 300 m and at 1000 m water depth. Sampling depths were chosen to obtain samples with a relatively low (9 mmol L-1, 300 m) and a relatively high (113 mmol L-1, 1000 m) silicic acid concentration as sample preparation differs for low- and highconcentration samples. Data for the 1000 m water sample were not normally distributed so the median is used to represent the central tendency for the two samples. Median delta Si-30(OH)(4) values of +1.66& for the low-concentration sample and +1.25& for the high-concentration sample were obtained. Agreement among laboratories is overall considered very good; however, small but statistically significant differences among the mean isotope values obtained by different laboratories were detected, likely reflecting inter-laboratory differences in chemical preparation including pre-concentration and purification methods together with different volumes of seawater analyzed, and the use of different mass spectrometers including the Neptune MC-ICP-MS (Thermo Fisher (TM), Germany), the Nu Plasma MC-ICP-MS (Nu Instruments (TM), Wrexham, UK), and the Finnigan (TM) (now Thermo Fisher (TM), Germany) MAT 252 IRMS. Future studies analyzing delta Si-30(OH)(4) in seawater should also analyze and report values for these same two reference waters in order to facilitate comparison of data generated among and within laboratories over time.
  •  
2.
  •  
3.
  • Osuchowski, Marcin F., et al. (författare)
  • The COVID-19 puzzle : deciphering pathophysiology and phenotypes of a new disease entity
  • 2021
  • Ingår i: The Lancet Respiratory Medicine. - : Elsevier. - 2213-2600 .- 2213-2619. ; 9:6, s. 622-642
  • Forskningsöversikt (refereegranskat)abstract
    • The zoonotic SARS-CoV-2 virus that causes COVID-19 continues to spread worldwide, with devastating consequences. While the medical community has gained insight into the epidemiology of COVID-19, important questions remain about the clinical complexities and underlying mechanisms of disease phenotypes. Severe COVID-19 most commonly involves respiratory manifestations, although other systems are also affected, and acute disease is often followed by protracted complications. Such complex manifestations suggest that SARS-CoV-2 dysregulates the host response, triggering wide-ranging immuno-inflammatory, thrombotic, and parenchymal derangements. We review the intricacies of COVID-19 pathophysiology, its various phenotypes, and the anti-SARS-CoV-2 host response at the humoral and cellular levels. Some similarities exist between COVID-19 and respiratory failure of other origins, but evidence for many distinctive mechanistic features indicates that COVID-19 constitutes a new disease entity, with emerging data suggesting involvement of an endotheliopathy-centred pathophysiology. Further research, combining basic and clinical studies, is needed to advance understanding of pathophysiological mechanisms and to characterise immuno-inflammatory derangements across the range of phenotypes to enable optimum care for patients with COVID-19.
  •  
4.
  •  
5.
  • Winkler, Martin S., et al. (författare)
  • Bridging animal and clinical research during SARS-CoV-2 pandemic : A new-old challenge
  • 2021
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 66
  • Forskningsöversikt (refereegranskat)abstract
    • Many milestones in medical history rest on animal modeling of human diseases. The SARS-CoV-2 pandemic has evoked a tremendous investigative effort primarily centered on clinical studies. However, several animal SARS-CoV-2/COVID-19 models have been developed and pre-clinical findings aimed at supporting clinical evidence rapidly emerge. In this review, we characterize the existing animal models exposing their relevance and limitations as well as outline their utility in COVID-19 drug and vaccine development. Concurrently, we summarize the status of clinical trial research and discuss the novel tactics utilized in the largest multi-center trials aiming to accelerate generation of reliable results that may subsequently shape COVID-19 clinical treatment practices. We also highlight areas of improvement for animal studies in order to elevate their translational utility. In pandemics, to optimize the use of strained resources in a short time-frame, optimizing and strengthening the synergy between the preclinical and clinical domains is pivotal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy