SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weis Sebastian) "

Sökning: WFRF:(Weis Sebastian)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Botvinik-Nezer, Rotem, et al. (författare)
  • Variability in the analysis of a single neuroimaging dataset by many teams
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 582, s. 84-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses(1). The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset(2-5). Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed. The results obtained by seventy different teams analysing the same functional magnetic resonance imaging dataset show substantial variation, highlighting the influence of analytical choices and the importance of sharing workflows publicly and performing multiple analyses.
  •  
2.
  • Maccarana, Marco, et al. (författare)
  • Asporin-deficient mice have tougher skin and altered skin glycosaminoglycan content and structure
  • 2017
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The main structural component of connective tissues is fibrillar, cross-linked collagen whose fibrillogenesis can be modulated by Small Leucine-Rich Proteins/Proteoglycans (SLRPs). Not all SLRPs’ effects on collagen and extracellular matrix in vivo have been elucidated; one of the less investigated SLRPs is asporin. Here we describe the successful generation of an Aspn-/- mouse model and the investigation of the Aspn-/- skin phenotype. Functionally, Aspn-/- mice had an increased skin mechanical toughness, although there were no structural changes present on histology or immunohistochemistry. Electron microscopy analyses showed 7% thinner collagen fibrils in Aspn-/- mice (not statistically significant). Several matrix genes were upregulated, including collagens (Col1a1, Col1a2, Col3a1), matrix metalloproteinases (Mmp2, Mmp3) and lysyl oxidases (Lox, Loxl2), while lysyl hydroxylase (Plod2) was downregulated. Intriguingly no differences were observed in collagen protein content or in collagen cross-linking-related lysine oxidation or hydroxylation. The glycosaminoglycan content and structure in Aspn-/- skin was profoundly altered: chondroitin/dermatan sulfate was more than doubled and had an altered composition, while heparan sulfate was halved and had a decreased sulfation. Also, decorin and biglycan were doubled in Aspn-/- skin. Overall, asporin deficiency changes skin glycosaminoglycan composition, and decorin and biglycan content, which may explain the changes in skin mechanical properties.
  •  
3.
  • Kalamajski, Sebastian, et al. (författare)
  • Increased C-Telopeptide Cross-linking of Tendon Type I Collagen in Fibromodulin-deficient Mice.
  • 2014
  • Ingår i: Journal of Biological Chemistry. - 1083-351X .- 0021-9258. ; 289:27, s. 18873-18879
  • Tidskriftsartikel (refereegranskat)abstract
    • The controlled assembly of collagen monomers into fibrils, with accompanying intermolecular cross-linking by lysyl oxidase-mediated bonds, is vital to the structural and mechanical integrity of connective tissues. This process is influenced by collagen-associated proteins, including Small Leucine-Rich Proteins (SLRPs), but the regulatory mechanisms are not well understood. Deficiency in fibromodulin, an SLRP, causes abnormal collagen fibril ultrastructure and decreased mechanical strength in mouse tendons. In this study, fibromodulin deficiency rendered tendon collagen more resistant to non-proteolytic extraction. The collagen had an increased and altered cross-linking pattern at an early stage of fibril formation. Collagen extracts contained a higher proportion of stably cross-linked α1(I) chains as a result of their C-telopeptide lysines being more completely oxidized to aldehydes. The findings suggest that fibromodulin selectively affects the extent and pattern of lysyl oxidase-mediated collagen cross-linking by sterically hindering access of the enzyme to telopeptides, presumably through binding to the collagen. Such activity implies a broader role for SLRP family members in regulating collagen cross-linking placement and quantity.
  •  
4.
  •  
5.
  • Lupi, Matteo, et al. (författare)
  • Regional earthquakes followed by delayed ground uplifts at Campi Flegrei Caldera, Italy : Arguments for a causal link
  • 2017
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 474, s. 436-446
  • Tidskriftsartikel (refereegranskat)abstract
    • Earthquake-triggered volcanic activity promoted by dynamic and static stresses are considered rare and difficult-to-capture geological processes. Calderas are ideal natural laboratories to investigate earthquake volcano interactions due to their sensitivity to incoming seismic energy. The Campi Flegrei caldera, Italy, is one of the most monitored volcanic systems worldwide. We compare ground elevation time series at Campi Flegrei with earthquake catalogues showing that uplift events at Campi Flegrei are associated with large regional earthquakes. Such association is supported by (yet non-definitive) binomial tests. Over a 70-year time window we identify 14 uplift events, 12 of them were preceded by an earthquake, and for 8 of them the earthquake-to-uplift timespan ranges from immediate responses to 1.2 yr. Such variability in the response delay may be due to the preparedness of the system with faster responses probably occurring in periods during which the Campi Flegrei system was already in a critical state. To investigate the process that may be responsible for the proposed association we simulate the propagation of elastic waves and show that passing body waves impose high dynamic strains at the roof of the magmatic reservoir of the Campi Flegrei at about 7 km depth. This may promote a short-lived embrittlement of the magma reservoir's carapace otherwise marked by a ductile behaviour. Such failure allows magma and exsolved volatiles to be released from the magmatic reservoir. The fluids, namely exsolved volatiles and/or melts, ascend through a nominally plastic zone above the magmatic reservoir. This mechanism and the associated inherent uncertainties require further investigations but the new concept already implies that geological processes triggered by passing seismic waves may become apparent several months after passage of the seismic waves. (C) 2017 Elsevier B.V. All rights reserved.
  •  
6.
  • Osuchowski, Marcin F., et al. (författare)
  • The COVID-19 puzzle : deciphering pathophysiology and phenotypes of a new disease entity
  • 2021
  • Ingår i: The Lancet Respiratory Medicine. - : Elsevier. - 2213-2600 .- 2213-2619. ; 9:6, s. 622-642
  • Forskningsöversikt (refereegranskat)abstract
    • The zoonotic SARS-CoV-2 virus that causes COVID-19 continues to spread worldwide, with devastating consequences. While the medical community has gained insight into the epidemiology of COVID-19, important questions remain about the clinical complexities and underlying mechanisms of disease phenotypes. Severe COVID-19 most commonly involves respiratory manifestations, although other systems are also affected, and acute disease is often followed by protracted complications. Such complex manifestations suggest that SARS-CoV-2 dysregulates the host response, triggering wide-ranging immuno-inflammatory, thrombotic, and parenchymal derangements. We review the intricacies of COVID-19 pathophysiology, its various phenotypes, and the anti-SARS-CoV-2 host response at the humoral and cellular levels. Some similarities exist between COVID-19 and respiratory failure of other origins, but evidence for many distinctive mechanistic features indicates that COVID-19 constitutes a new disease entity, with emerging data suggesting involvement of an endotheliopathy-centred pathophysiology. Further research, combining basic and clinical studies, is needed to advance understanding of pathophysiological mechanisms and to characterise immuno-inflammatory derangements across the range of phenotypes to enable optimum care for patients with COVID-19.
  •  
7.
  • Peters, S., et al. (författare)
  • Reconditioning the Neurogenic Niche of Adult Non-human Primates by Antisense Oligonucleotide-Mediated Attenuation of TGFβ Signaling
  • 2021
  • Ingår i: Neurotherapeutics. - : Springer Nature. - 1933-7213 .- 1878-7479. ; 18:3, s. 1963-1979
  • Tidskriftsartikel (refereegranskat)abstract
    • Adult neurogenesis is a target for brain rejuvenation as well as regeneration in aging and disease. Numerous approaches showed efficacy to elevate neurogenesis in rodents, yet translation into therapies has not been achieved. Here, we introduce a novel human TGFβ-RII (Transforming Growth Factor—Receptor Type II) specific LNA-antisense oligonucleotide (“locked nucleotide acid”—“NVP-13”), which reduces TGFβ-RII expression and downstream receptor signaling in human neuronal precursor cells (ReNcell CX® cells) in vitro. After we injected cynomolgus non-human primates repeatedly i.th. with NVP-13 in a preclinical regulatory 13-week GLP-toxicity program, we could specifically downregulate TGFβ-RII mRNA and protein in vivo. Subsequently, we observed a dose-dependent upregulation of the neurogenic niche activity within the hippocampus and subventricular zone: human neural progenitor cells showed significantly (up to threefold over control) enhanced differentiation and cell numbers. NVP-13 treatment modulated canonical and non-canonical TGFβ pathways, such as MAPK and PI3K, as well as key transcription factors and epigenetic factors involved in stem cell maintenance, such as MEF2A and pFoxO3. The latter are also dysregulated in clinical neurodegeneration, such as amyotrophic lateral sclerosis. Here, we provide for the first time in vitro and in vivo evidence for a novel translatable approach to treat neurodegenerative disorders by modulating neurogenesis.
  •  
8.
  • Winkler, Martin S., et al. (författare)
  • Bridging animal and clinical research during SARS-CoV-2 pandemic : A new-old challenge
  • 2021
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 66
  • Forskningsöversikt (refereegranskat)abstract
    • Many milestones in medical history rest on animal modeling of human diseases. The SARS-CoV-2 pandemic has evoked a tremendous investigative effort primarily centered on clinical studies. However, several animal SARS-CoV-2/COVID-19 models have been developed and pre-clinical findings aimed at supporting clinical evidence rapidly emerge. In this review, we characterize the existing animal models exposing their relevance and limitations as well as outline their utility in COVID-19 drug and vaccine development. Concurrently, we summarize the status of clinical trial research and discuss the novel tactics utilized in the largest multi-center trials aiming to accelerate generation of reliable results that may subsequently shape COVID-19 clinical treatment practices. We also highlight areas of improvement for animal studies in order to elevate their translational utility. In pandemics, to optimize the use of strained resources in a short time-frame, optimizing and strengthening the synergy between the preclinical and clinical domains is pivotal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (6)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Zhang, Yan (1)
Korhonen, Laura (1)
Lindholm, Dan (1)
Vertessy, Beata G. (1)
Wang, Mei (1)
Wang, Xin (1)
visa fler...
Liu, Yang (1)
Kumar, Rakesh (1)
Wang, Dong (1)
Li, Ke (1)
Liu, Ke (1)
Zhang, Yang (1)
Nàgy, Péter (1)
Kominami, Eiki (1)
van der Goot, F. Gis ... (1)
van der Poll, Tom (1)
Maccarana, Marco (1)
Nilsonne, Gustav (1)
Botvinik-Nezer, Rote ... (1)
Dreber Almenberg, An ... (1)
Holzmeister, Felix (1)
Huber, Juergen (1)
Johannesson, Magnus (1)
Kirchler, Michael (1)
Poldrack, Russell A. (1)
Schonberg, Tom (1)
Bonaldo, Paolo (1)
Thum, Thomas (1)
Adams, Christopher M (1)
Minucci, Saverio (1)
Vellenga, Edo (1)
Swärd, Karl (1)
Nilsson, Per (1)
Tinghög, Gustav, 197 ... (1)
Glerean, Enrico (1)
De Milito, Angelo (1)
Zhang, Jian (1)
Shukla, Deepak (1)
Kågedal, Katarina (1)
Chen, Guoqiang (1)
Liu, Wei (1)
Cheetham, Michael E. (1)
Sigurdson, Christina ... (1)
Clarke, Robert (1)
Zhang, Fan (1)
Gonzalez-Alegre, Ped ... (1)
Jin, Lei (1)
Chen, Qi (1)
Taylor, Mark J. (1)
Rubin, Kristofer (1)
visa färre...
Lärosäte
Stockholms universitet (3)
Lunds universitet (3)
Karolinska Institutet (3)
Uppsala universitet (2)
Örebro universitet (2)
Linköpings universitet (2)
visa fler...
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Handelshögskolan i Stockholm (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Naturvetenskap (3)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy