SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weissman Irving L.) "

Sökning: WFRF:(Weissman Irving L.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Ying, et al. (författare)
  • Clonally expanding smooth muscle cells promote atherosclerosis by escaping efferocytosis and activating the complement cascade
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 117:27, s. 15818-15826
  • Tidskriftsartikel (refereegranskat)abstract
    • Atherosclerosis is the process underlying heart attack and stroke. Despite decades of research, its pathogenesis remains unclear. Dogma suggests that atherosclerotic plaques expand primarily via the accumulation of cholesterol and inflammatory cells. However, recent evidence suggests that a substantial portion of the plaque may arise from a subset of "dedifferentiated" vascular smooth muscle cells (SMCs) which proliferate in a clonal fashion. Herein we use multicolor lineage-tracing models to confirm that the mature SMC can give rise to a hyperproliferative cell which appears to promote inflammation via elaboration of complement-dependent anaphylatoxins. Despite being extensively opsonized with prophagocytic complement fragments, we find that this cell also escapes immune surveillance by neighboring macrophages, thereby exacerbating its relative survival advantage. Mechanistic studies indicate this phenomenon results from a generalized opsoninsensing defect acquired by macrophages during polarization. This defect coincides with the noncanonical up-regulation of so-called don't eat me molecules on inflamed phagocytes, which reduces their capacity for programmed cell removal (PrCR). Knockdown or knockout of the key antiphagocytic molecule CD47 restores the ability of macrophages to sense and clear opsonized targets in vitro, allowing for potent and targeted suppression of clonal SMC expansion in the plaque in vivo. Because integrated clinical and genomic analyses indicate that similar pathways are active in humans with cardiovascular disease, these studies suggest that the clonally expanding SMC may represent a translational target for treating atherosclerosis.
  •  
2.
  • Beerman, Isabel, et al. (författare)
  • Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion
  • 2010
  • Ingår i: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 107:12, s. 5465-5470
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging of the hematopoietic stem cell compartment is believed to contribute to the onset of a variety of age-dependent blood cell pathophysiologies. Mechanistic drivers of hematopoietic stem cell (HSC) aging include DNA damage accumulation and induction of tumor suppressor pathways that combine to reduce the regenerative capacity of aged HSCs. Such mechanisms do not however account for the change in lymphoid and myeloid lineage potential characteristic of HSC aging, which is believed to be central to the decline of immune competence and predisposition to myelogenous diseases in the elderly. Here we have prospectively isolated functionally distinct HSC clonal subtypes, based on cell surface phenotype, bearing intrinsically different capacities to differentiate toward lymphoid and myeloid effector cells mediated by quantitative differences in lineage priming. Finally, we present data supporting a model in which clonal expansion of a class of intrinsically myeloid-biased HSCs with robust self-renewal potential is a central component of hematopoietic aging.
  •  
3.
  • Bhattacharya, Deepta, et al. (författare)
  • Niche recycling through division-independent egress of hematopoietic stem cells
  • 2009
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 114:22, s. 37-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cells (HSCs) are thought to reside in discrete niches through stable adhesion, yet previous studies have suggested that host HSCs can be replaced by transplanted donor HSCs, even in the absence of cytoreductive conditioning. To explain this apparent paradox, we calculated, through cell surface phenotyping and transplantation of unfractionated blood, that similar to 1-5% of the total pool of HSCs enters into the circulation each day. Bromodeoxyuridine (BrdU) feeding experiments demonstrated that HSCs in the peripheral blood incorporate BrdU at the same rate as do HSCs in the bone marrow, suggesting that egress from the bone marrow to the blood can occur without cell division and can leave behind vacant HSC niches. Consistent with this, repetitive daily transplantations of small numbers of HSCs administered as new niches became available over the course of 7 d led to significantly higher levels of engraftment than did large, single-bolus transplantations of the same total number of HSCs. These data provide insight as to how HSC replacement can occur despite the residence of endogenous HSCs in niches, and suggest therapeutic interventions that capitalize upon physiological HSC egress.
  •  
4.
  • Bhattacharya, Deepta, et al. (författare)
  • Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning
  • 2006
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 203:1, s. 73-85
  • Tidskriftsartikel (refereegranskat)abstract
    • In the absence of irradiation or other cytoreductive conditioning, endogenous hematopoietic stem cells (HSCs) are thought to fill the unique niches within the bone marrow that allow maintenance of full hematopoietic potential and thus prevent productive engraftment of transplanted donor HSCs. By transplantation of purified exogenous HSCs into unconditioned congenic histocompatible strains of mice, we show that approximately 0.1-1.0% of these HSC niches are available for engraftment at any given point and find no evidence that endogenous HSCs can be displaced from the niches they occupy. We demonstrate that productive engraftment of HSCs within these empty niches is inhibited by host CD4+ T cells that recognize very subtle minor histocompatibility differences. Strikingly, transplantation of purified HSCs into a panel of severe combined immunodeficient (SCID) mice leads to a rapid and complete rescue of lymphoid deficiencies through engraftment of these very rare niches and expansion of donor lymphoid progenitors. We further demonstrate that transient antibody-mediated depletion of CD4+ T cells allows short-term HSC engraftment and regeneration of B cells in a mouse model of B(-) non-SCID. These experiments provide a general mechanism by which transplanted HSCs can correct hematopoietic deficiencies without any host conditioning or with only highly specific and transient lymphoablation.
  •  
5.
  • Bryder, David, et al. (författare)
  • Hematopoietic stem cells: the paradigmatic tissue-specific stem cell
  • 2006
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 1525-2191 .- 0002-9440. ; 169:2, s. 338-346
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent prospective isolation of a wide variety of somatically derived stem cells has affirmed the notion that homeostatic maintenance of most tissues and organs is mediated by tissue-specific stem and progenitor cells and fueled enthusiasm for the use of such cells in strategies aimed at repairing or replacing damaged, diseased, or genetically deficient tissues and organs. Hematopoietic stem cells (HSCs) are arguably the most well-characterized tissue-specific stem cell, with decades of basic research and clinical application providing not only a profound understanding of the principles of stem cell biology, but also of its potential pitfalls. It is our belief that emerging stem cell fields can benefit greatly from an understanding of the lessons learned from the study of HSCs. In this review we discuss some general concepts regarding stem cell biology learned from the study of HSCs with a highlight on recent work pertaining to emerging topics of interest for stem cell biology.
  •  
6.
  • Kahn, Suzana A., et al. (författare)
  • Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Medulloblastoma is the most common malignant brain tumor of childhood. Group 3 medulloblastoma, the most aggressive molecular subtype, frequently disseminates through the leptomeningeal cerebral spinal fluid (CSF) spaces in the brain and spinal cord. The mechanism of dissemination through the CSF remains poorly understood, and the molecular pathways involved in medulloblastoma metastasis and self-renewal are largely unknown. Here we show that NOTCH1 signaling pathway regulates both the initiation of metastasis and the self-renewal of medulloblastoma. We identify a mechanism in which NOTCH1 activates BMI1 through the activation of TWIST1. NOTCH1 expression and activity are directly related to medulloblastoma metastasis and decreased survival rate of tumor-bearing mice. Finally, medulloblastoma-bearing mice intrathecally treated with anti-NRR1, a NOTCH1 blocking antibody, present lower frequency of spinal metastasis and higher survival rate. These findings identify NOTCH1 as a pivotal driver of Group 3 medulloblastoma metastasis and self-renewal, supporting the development of therapies targeting this pathway.
  •  
7.
  • Pronk, Cornelis J. H., et al. (författare)
  • Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
  • 2007
  • Ingår i: Cell Stem Cell. - : Elsevier (Cell Press). - 1934-5909 .- 1875-9777. ; 1:4, s. 428-442
  • Tidskriftsartikel (refereegranskat)abstract
    • The major myeloid blood cell lineages are generated from hematopoietic stem cells by differentiation through a series of increasingly committed progenitor cells. Precise characterization of intermediate progenitors is important for understanding fundamental differentiation processes and a variety of disease states, including leukemia. Here, we evaluated the functional in vitro and in vivo potentials of a range of prospectively isolated myeloid precursors with differential expression of CD150, Endoglin, and CD41. Our studies revealed a hierarchy of myeloerythroid progenitors with distinct lineage potentials. The global gene expression signatures of these subsets were consistent with their functional capacities, and hierarchical clustering analysis suggested likely lineage relationships. These studies provide valuable tools for understanding myeloid lineage commitment, including isolation of an early erythroid-restricted precursor, and add to existing models of hematopoietic differentiation by suggesting that progenitors of the innate and adaptive immune system can separate late, following the divergence of megakaryocytic/erythroid potential.
  •  
8.
  • Rossi, Derrick J, et al. (författare)
  • Cell intrinsic alterations underlie hematopoietic stem cell aging
  • 2005
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 102:26, s. 9194-9199
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss of immune function and an increased incidence of myeloid leukemia are two of the most clinically significant consequences of aging of the hematopoietic system. To better understand the mechanisms underlying hematopoietic aging, we evaluated the cell intrinsic functional and molecular properties of highly purified long-term hematopoietic stem cells (LT-HSCs) from young and old mice. We found that LT-HSC aging was accompanied by cell autonomous changes, including increased stem cell self-renewal, differential capacity to generate committed myeloid and lymphoid progenitors, and diminished lymphoid potential. Expression profiling revealed that LT-HSC aging was accompanied by the systemic down-regulation of genes mediating lymphoid specification and function and up-regulation of genes involved in specifying myeloid fate and function. Moreover, LT-HSCs from old mice expressed elevated levels of many genes involved in leukemic transformation. These data support a model in which age-dependent alterations in gene expression at the stem cell level presage downstream developmental potential and thereby contribute to age-dependent immune decline, and perhaps also to the increased incidence of leukemia in the elderly.
  •  
9.
  • Rossi, Derrick J, et al. (författare)
  • Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7145, s. 725-729
  • Tidskriftsartikel (refereegranskat)abstract
    • A diminished capacity to maintain tissue homeostasis is a central physiological characteristic of ageing. As stem cells regulate tissue homeostasis, depletion of stem cell reserves and/or diminished stem cell function have been postulated to contribute to ageing. It has further been suggested that accumulated DNA damage could be a principal mechanism underlying age-dependent stem cell decline. We have tested these hypotheses by examining haematopoietic stem cell reserves and function with age in mice deficient in several genomic maintenance pathways including nucleotide excision repair, telomere maintenance and non-homologous end-joining. Here we show that although deficiencies in these pathways did not deplete stem cell reserves with age, stem cell functional capacity was severely affected under conditions of stress, leading to loss of reconstitution and proliferative potential, diminished self-renewal, increased apoptosis and, ultimately, functional exhaustion. Moreover, we provide evidence that endogenous DNA damage accumulates with age in wild-type stem cells. These data are consistent with DNA damage accrual being a physiological mechanism of stem cell ageing that may contribute to the diminished capacity of aged tissues to return to homeostasis after exposure to acute stress or injury.
  •  
10.
  • Rossi, Derrick J., et al. (författare)
  • Hematopoietic stem cell aging: Mechanism and consequence
  • 2007
  • Ingår i: Experimental Gerontology. - : Elsevier BV. - 1873-6815 .- 0531-5565. ; 42:5, s. 385-390
  • Tidskriftsartikel (refereegranskat)abstract
    • Advancing age is frequented by the onset of a variety of hematological conditions characterized by diminished homeostatic control of blood cell production. The fact that upstream hematopoietic stem and progenitor cells are obligate mediators of homeostatic control of all blood lineages, has implicated the involvement of these cells in the pathophysiology of these conditions. Indeed, evidence from our group and others has suggested that two of the most clinically significant age-associated hematological conditions, namely, the diminution of the adaptive immune system and the elevated incidence of myeloproliferative diseases, have their origin in cell autonomous changes in the functional capacity of hematopoietic stem cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy