SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Welz Armin) "

Sökning: WFRF:(Welz Armin)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Breitbach, Martin, et al. (författare)
  • Potential risks of bone marrow cell transplantation into infarcted hearts
  • 2007
  • Ingår i: Blood. - Washington, DC : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 110:4, s. 1362-1369
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular replacement therapy has emerged as a novel strategy for the treatment of heart failure. The aim of our study was to determine the fate of injected mesenchymal stem cells (MSCs) and whole bone marrow (BM) cells in the infarcted heart. MSCs were purified from BM of transgenic mice and characterized using flow cytometry and in vitro differentiation assays. Myocardial infarctions were generated in mice and different cell populations including transgenic MSCs, unfractionated BM cells, or purified hematopoietic progenitors were injected. Encapsulated structures were found in the infarcted areas of a large fraction of hearts after injecting MSCs (22 of 43, 51.2%) and unfractionated BM cells (6 of 46, 13.0%). These formations contained calcifications and/or ossifications. In contrast, no pathological abnormalities were found after injection of purified hematopoietic progenitors (0 of 5, 0.0%), fibroblasts (0 of 5, 0.0%), vehicle only (0 of 30, 0.0%), or cytokine-induced mobilization of BM cells (0 of 35, 0.0%). We conclude that the developmental fate of BM-derived cells is not restricted by the surrounding tissue after myocardial infarction and that the MSC fraction underlies the extended bone formation in the infarcted myocardium. These findings seriously question the biologic basis and clinical safety of using whole BM and in particular MSCs to treat nonhematopoietic disorders.
  •  
2.
  • Kolossov, Eugen, et al. (författare)
  • Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium
  • 2006
  • Ingår i: Journal of Experimental Medicine. - New York, USA : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 203:10, s. 2315-2327
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular cardiomyoplasty is an attractive option for the treatment of severe heart failure. It is, however, still unclear and controversial which is the most promising cell source. Therefore, we investigated and examined the fate and functional impact of bone marrow (BM) cells and embryonic stem cell (ES cell)-derived cardiomyocytes after transplantation into the infarcted mouse heart. This proved particularly challenging for the ES cells, as their enrichment into cardiomyocytes and their long-term engraftment and tumorigenicity are still poorly understood. We generated transgenic ES cells expressing puromycin resistance and enhanced green fluorescent protein cassettes under control of a cardiac-specific promoter. Puromycin selection resulted in a highly purified (>99%) cardiomyocyte population, and the yield of cardiomyocytes increased 6-10-fold because of induction of proliferation on purification. Long-term engraftment (4-5 months) was observed when co-transplanting selected ES cell-derived cardiomyocytes and fibroblasts into the injured heart of syngeneic mice, and no teratoma formation was found (n = 60). Although transplantation of ES cell-derived cardiomyocytes improved heart function, BM cells had no positive effects. Furthermore, no contribution of BM cells to cardiac, endothelial, or smooth muscle neogenesis was detected. Hence, our results demonstrate that ES-based cell therapy is a promising approach for the treatment of impaired myocardial function and provides better results than BM-derived cells.
  •  
3.
  • Sasse, Philipp, et al. (författare)
  • Perlecan is critical for heart stability
  • 2008
  • Ingår i: Cardiovascular Research. - : Oxford University Press (OUP). - 1755-3245 .- 0008-6363. ; 80:3, s. 435-444
  • Tidskriftsartikel (refereegranskat)abstract
    • Perlecan is a heparansulfate proteoglycan found in basement membranes, cartilage, and several mesenchymal tissues that form during development, tumour growth, and tissue repair. Loss-of-function mutations in the perlecan gene in mice are associated with embryonic lethality caused primarily by cardiac abnormalities probably due to hemopericards. The aim of the present study was to investigate the mechanism underlying the early embryonic lethality and the pathophysiological relevance of perlecan for heart function. Perlecan-deficient murine embryonic stem cells were used to investigate the myofibrillar network and the electrophysiological properties of single cardiomyocytes. The mechanical stability of the developing perlecan-deficient mouse hearts was analysed by microinjecting fluorescent-labelled dextran. Maturation and formation of basement membranes and cell-cell contacts were investigated by electron microscopy, immunohistochemistry, and western blotting. Sarcomere formation and cellular functional properties were unaffected in perlecan-deficient cardiomyocytes. However, the intraventricular dye injection experiments revealed mechanical instability of the early embryonic mouse heart muscle wall before embryonic day 10.5 (E10.5). Accordingly, perlecan-null embryonic hearts contained lower amounts of the critical basement membrane components, collagen IV and laminins. Furthermore, basement membranes were absent in perlecan-null cardiomoycytes whereas adherens junctions formed and matured around E9.5. Infarcted hearts from perlecan heterozygous mice displayed reduced heart function when compared with wild-type hearts. We propose that perlecan plays an important role in maintaining the integrity during cardiac development and is important for heart function in the adult heart after injury.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy