SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wen Hanjie) "

Sökning: WFRF:(Wen Hanjie)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ye, Quanzhi, et al. (författare)
  • Toward Efficient Detection of Small Near-Earth Asteroids Using the Zwicky Transient Facility (ZTF)
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:1001
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe ZStreak, a semi-real-time pipeline specialized in detecting small, fast-moving, near-Earth asteroids (NEAs), which is currently operating on the data from the newly commissioned Zwicky Transient Facility (ZTF) survey. Based on a prototype originally developed by Waszczak et al. (2017) for the Palomar Transient Factory (PTF), the predecessor of ZTF, ZStreak features an improved machine-learning model that can cope with the 10x data rate increment between PTF and ZTF. Since its first discovery on 2018 February 5 (2018 CL), ZTF/ZStreak has discovered 45 confirmed new NEAs over a total of 232 observable nights until 2018 December 31. Most of the discoveries are small NEAs, with diameters less than similar to 100. m. By analyzing the discovery circumstances, we find that objects having the first to last detection time interval under 2. hr are at risk of being lost. We will further improve real-time follow-up capabilities, and work on suppressing false positives using deep learning.
  •  
2.
  • Zhang, Shuichang, et al. (författare)
  • Paleoenvironmental proxies and what the Xiamaling Formation tells us about the mid-Proterozoic ocean
  • 2019
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 17:3, s. 225-246
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mesoproterozoic Era (1,600–1,000 million years ago, Ma) geochemical record is sparse, but, nevertheless, critical in untangling relationships between the evolution of eukaryotic ecosystems and the evolution of Earth-surface chemistry. The ca. 1,400 Ma Xiamaling Formation has experienced only very low-grade thermal maturity and has emerged as a promising geochemical archive informing on the interplay between climate, ecosystem organization, and the chemistry of the atmosphere and oceans. Indeed, the geochemical record of portions of the Xiamaling Formation has been used to place minimum constraints on concentrations of atmospheric oxygen as well as possible influences of climate and climate change on water chemistry and sedimentation dynamics. A recent study has argued, however, that some portions of the Xiamaling Formation deposited in a highly restricted environment with only limited value as a geochemical archive. In this contribution, we fully explore these arguments as well as the underlying assumptions surrounding the use of many proxies used for paleo-environmental reconstructions. In doing so, we pay particular attention to deep-water oxygen-minimum zone environments and show that these generate unique geochemical signals that have been underappreciated. These signals, however, are compatible with the geochemical record of those parts of the Xiamaling Formation interpreted as most restricted. Overall, we conclude that the Xiamaling Formation was most likely open to the global ocean throughout its depositional history. More broadly, we show that proper paleo-environmental reconstructions require an understanding of the biogeochemical signals generated in all relevant modern analogue depositional environments. We also evaluate new data on the δ 98 Mo of Xiamaling Formation shales, revealing possible unknown pathways of molybdenum sequestration into sediments and concluding, finally, that seawater at that time likely had a δ 98 Mo value of about 1.1‰.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy