SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wenger Oliver S.) "

Sökning: WFRF:(Wenger Oliver S.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bonn, Annabell G., et al. (författare)
  • Photoinduced Electron Transfer in an Anthraquinone-[Ru(bpy)(3)](2+)-Oligotriarylamine-[Ru(bpy)(3)](2+)-Anthraquinone Pentad
  • 2016
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 55:6, s. 2894-2899
  • Tidskriftsartikel (refereegranskat)abstract
    • A molecular pentad comprised of a central multielectron donor and two flanking photosensitizer-acceptor moieties was prepared in order to explore the possibility of accumulating two positive charges at the central donor, using visible light as an energy input. Photoinduced charge accumulation in purely molecular systems without sacrificial reagents is challenging, because of the multitude of energy-wasting reaction pathways that are accessible after excitation with two photons. As expected, the main photoproduct in our pentad is a simple electron hole pair, and it is tricky to identify the desired two-electron oxidation product on top of the stronger signal resulting from one-electron oxidation.
  •  
2.
  • Pettersson Rimgard, Belinda, 1992- (författare)
  • Tailing Charges on New Paths : Ultrafast intramolecular charge transfer in chromophores
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • By tailing charges on their paths within a molecule, one can gain fundamental knowledge of their inherent reactivity. The charges, originally residing in their lowest energy configuration, can upon light absorption move across the system, or transfer in between them. The focus of this thesis has been to study how electrons and protons transfer between different fragments of a molecule, following an absorption of laser light. The relevance of this work is not only attributed to its mechanistic insights, but also that it might provide a foundation for future designs of renewable energy systems, such as solar cells and fuel cells. This thesis entails the investigation of a derivative of the famous N3 dye, developed for dye sensitized solar cells. This dye is a ruthenium-complex, with two bipyridyl and two isothiocyanate coordinated ligands. There was no real consensus in the literature whether the initial excitation of this complex, would cause the localization of an electron on one bipyridyl or, if it would delocalize over both of them.  Moreover, if the charge did initially localize, would it, at some point in time, transfer in between the ligands, hence perform interligand electron transfer? The results confirm the existence of an initial localization onto one ligand, and that interligand electron transfer occurs on a sub-picosecond time scale. This diminishes the risk of e.g. slow electron injection into a semiconductor surface such as in a solar cell, due to a charge localization onto a surface unbound ligand. In photocatalysis, a concerted proton and electron transfer is sought after, as the total charge neutralizes thus avoids the formation of high energy intermediates. In a set of anthracene-phenol-pyridine triads a concerted mechanism was investigated, where the charges were shown to separate upon excitation, but later slowly recombine. The slow recombination followed a Marcus inverted region behavior, with a counter-intuitive decrease in rate with an increase in driving force. A concerted mechanism in the inverted region had previously never been observed. As the driving forces were altered, with the help of solvent and temperature, alternative reaction paths in the triads became visible. The anthracene-localized excitation was observed to transfer across the molecule, to the phenol-pyridine, where a concomitant proton transfer occurred. This proton-coupled energy transfer mechanism, is a new phenomenon that further adds to the knowledge of charge transfer mechanisms.
  •  
3.
  • Schmid, Lucius, et al. (författare)
  • Borylation in the Second Coordination Sphere of FeIICyanido Complexes and Its Impact on Their Electronic Structures and Excited-State Dynamics
  • 2022
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 61:40, s. 15853-15863
  • Tidskriftsartikel (refereegranskat)abstract
    • Second coordination sphere interactions of cyanido complexes with hydrogen-bonding solvents and Lewis acids are known to influence their electronic structures, whereby the non-labile attachment of B(C6F5)3resulted in several particularly interesting new compounds lately. Here, we investigate the effects of borylation on the properties of two FeIIcyanido complexes in a systematic manner by comparing five different compounds and using a range of experimental techniques. Electrochemical measurements indicate that borylation entails a stabilization of the FeII-based t2g-like orbitals by up to 1.65 eV, and this finding was confirmed by Mössbauer spectroscopy. This change in the electronic structure has a profound impact on the UV-vis absorption properties of the borylated complexes compared to the non-borylated ones, shifting their metal-to-ligand charge transfer (MLCT) absorption bands over a wide range. Ultrafast UV-vis transient absorption spectroscopy provides insight into how borylation affects the excited-state dynamics. The lowest metal-centered (MC) excited states become shorter-lived in the borylated complexes compared to their cyanido analogues by a factor of ∼10, possibly due to changes in outer-sphere reorganization energies associated with their decay to the electronic ground state as a result of B(C6F5)3attachment at the cyanido N lone pair.
  •  
4.
  • Wang, Cui, et al. (författare)
  • First-Row d6 Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light
  • 2023
  • Ingår i: Angewandte Chemie - International Edition. - 1433-7851. ; 62:43
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosensitizers for sensitized triplet-triplet annihilation upconversion (sTTA-UC) often rely on precious heavy metals, whereas coordination complexes based on abundant first-row transition metals are less common. This is mainly because long-lived triplet excited states are more difficult to obtain for 3d metals, particularly when the d-subshell is only partially filled. Here, we report the first example of sTTA-UC based on a 3d6 metal photosensitizer yielding an upconversion performance competitive with precious metal-based analogues. Using a newly developed Cr0 photosensitizer featuring equally good photophysical properties as an OsII benchmark complex in combination with an acetylene-decorated anthracene annihilator, red-to-blue upconversion is achievable. The upconversion efficiency under optimized conditions is 1.8 %, and the excitation power density threshold to reach the strong annihilation limit is 5.9 W/cm2. These performance factors, along with high photostability, permit the initiation of acrylamide polymerization by red light, based on radiative energy transfer between delayed annihilator fluorescence and a blue light absorbing photo-initiator. Our study provides the proof-of-concept for photon upconversion with elusive first-row analogues of widely employed precious d6 metal photosensitizers, and for their application in photochemical reactions triggered by excitation wavelengths close to near-infrared.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy