SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wennbom Marika) "

Sökning: WFRF:(Wennbom Marika)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Auffret, Alistair G., et al. (författare)
  • HistMapR : Rapid digitization of historical land-use maps in R
  • 2017
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 8:11, s. 1453-1457
  • Tidskriftsartikel (refereegranskat)abstract
    • Habitat destruction and degradation represent serious threats to biodiversity, and quantification of land-use change over time is important for understanding the consequences of these changes to organisms and ecosystem service provision. Comparing land use between maps from different time periods allows estimation of the magnitude of habitat change in an area. However, digitizing historical maps manually is time-consuming and analyses of change are usually carried out at small spatial extents or at low resolutions. HistMapR contains a number of functions that can be used to semi-automatically digitize historical land use according to a map's colours, as defined by the RGB bands of the raster image. We test the method on different historical land-use map series and compare results to manual digitizations. Digitization is fast, and agreement with manually digitized maps of around 80-90% meets common targets for image classification. We hope that the ability to quickly classify large areas of historical land use will promote the inclusion of land-use change into analyses of biodiversity, species distributions and ecosystem services.
  •  
2.
  • Erlandsson, Rasmus, et al. (författare)
  • An innovative use of orthophotos - possibilities to assess plant productivity from colour infrared aerial orthophotos
  • 2019
  • Ingår i: Remote Sensing in Ecology and Conservation. - : Wiley. - 2056-3485. ; 5:4, s. 291-301
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of ecological processes should focus on a relevant spatial scale, as crude spatial resolution will fail to detect small scale variation which is of potentially critical importance. Remote sensing methods based on multispectral satellite images are used to assess primary productivity and aerial photos to map vegetation structure. Both methods are based on the principle that photosynthetically active vegetation has a characteristic spectral signature. Yet they are applied differently due to technical differences. Satellite images are suitable for calculations of vegetation indices, for example Normalized Difference Vegetation Index (NDVI). Colour infrared aerial photography was developed for visual interpretation and never regarded for calculation of indices since the spectrum recorded and post processing differ from satellite images. With digital cameras and improved techniques for generating colour infrared orthophotos, the implications of these differences are uncertain and should be explored. We tested if plant productivity can be assessed using colour infrared aerial orthophotos (0.5 m resolution) by applying the standard NDVI equation. With 112 vegetation samples as ground truth, we evaluated an index that we denote rel‐NDVIortho in two areas of the Fennoscandian mountain tundra. We compared the results with conventional SPOT5 satellite‐based NDVI (10 m resolution). rel‐NDVIortho was related to plant productivity (Northern area: P = <0.001, R2 = 0.73; Southern area: P = <0.001, R2 = 0.39), performed similar to SPOT5 satellite NDVI (Northern area: P = <0.001, R2 = 0.76; Southern area: P = <0.001, R2 = 0.40) and the two methods were highly correlated (cor = 0.95 and cor = 0.84). Despite different plant composition, the results were consistent between areas. Our results suggest that vegetation indices based on colour infrared aerial orthophotos can be a valuable tool in the remote sensing toolbox, offering a high‐spatial resolution proxy for plant productivity with less signal degradation due to atmospheric interference and clouds, compared to satellite images. Further research should aim to investigate if the method is applicable to other ecosystems.
  •  
3.
  • Kirchner, Nina, et al. (författare)
  • High-resolution bathymetric mapping reveals subaqueous glacial landforms in the Arctic alpine lake Tarfala, Sweden
  • 2019
  • Ingår i: Journal of Quaternary Science. - : Wiley. - 0267-8179 .- 1099-1417. ; 34:6, s. 452-462
  • Tidskriftsartikel (refereegranskat)abstract
    • In Arctic alpine regions, glacio-lacustrine environments respond sensitively to variations in climate conditions, impacting, for example,glacier extent and rendering former ice-contact lakes into ice distal lakes and vice versa. Lakefloors may hold morphological records of past glacier extent, but remoteness and long periods of ice cover on such lakes make acquisition of high-resolution bathymetric datasets challenging. Lake Tarfala and Kebnepakte Glacier, located in the Kebnekaise mountains, northern Sweden, comprise a small, dynamic glacio-lacustrine system holding a climate archive that is not well studied. Using an autonomous surface vessel, a high-resolution bathymetric dataset for Lake Tarfala was acquired in 2016, from which previously undiscovered end moraines and a potential grounding line feature were identified. For Kebnepakte Glacier, structure-from-motion photogrammetry was used to reconstruct its shape from photographs taken in 1910 and 1945. Combining these methods connects the glacial landform record identified at the lakefloor with the centennial-scale dynamic behaviour of Kebnepakte Glacier. During its maximum 20(th) century extent, attained c. 1910, Kebnepakte Glacier reached far into Lake Tarfala, but had retreated onto land by 1945, at an average of 7.9 m year(-1).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy