SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Westerhoff Hans V) "

Sökning: WFRF:(Westerhoff Hans V)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aamodt, K., et al. (författare)
  • Charged-particle multiplicity measurement in proton-proton collisions at root s=0.9 and 2.36 TeV with ALICE at LHC
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 68:1-2, s. 89-108
  • Tidskriftsartikel (refereegranskat)abstract
    • Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range vertical bar eta vertical bar < 1.4. In the central region (vertical bar eta vertical bar < 0.5), at 0.9 TeV, we measure charged-particle pseudo-rapidity density dN(ch)/d eta = 3.02 +/- 0.01(stat.)(-0.05)(+0.08)(syst.) for inelastic interactions, and dN(ch)/d eta = 3.58 +/- 0.01 (stat.)(-0.12)(+0.12)(syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dN(ch)/d eta = 3.77 +/- 0.01(stat.)(-0.12)(+0.25)(syst.) for inelastic, and dN(ch)/d eta = 4.43 +/- 0.01(stat.)(-0.12)(+0.17)(syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% +/- 0.5%(stat.)(-2.8)(+5.7)%(syst.) for inelastic and 23.7% +/- 0.5%(stat.)(-1.1)(+4.6)%(syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.
  •  
2.
  • Aamodt, K., et al. (författare)
  • Charged-particle multiplicity measurement in proton-proton collisions at root s=7 TeV with ALICE at LHC
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 68:3-4, s. 345-354
  • Tidskriftsartikel (refereegranskat)abstract
    • The pseudorapidity density and multiplicity distribution of charged particles produced in proton-proton collisions at the LHC, at a centre-of-mass energy root s = 7 TeV, were measured in the central pseudorapidity region vertical bar eta vertical bar < 1. Comparisons are made with previous measurements at root s = 0.9 TeV and 2.36 TeV. At root s = 7 TeV, for events with at least one charged particle in |eta vertical bar| < 1, we obtain dN(ch)/d eta = 6.01 +/- 0.01(stat.)(-0.12)(+0.20) (syst.). This corresponds to an increase of 57.6%+/-0.4%(stat.)(-1.8%)(+3.6) (syst.) relative to collisions at 0.9 TeV, significantly higher than calculations from commonly used models. The multiplicity distribution at 7 TeV is described fairly well by the negative binomial distribution.
  •  
3.
  • Aamodt, K., et al. (författare)
  • Midrapidity Antiproton-to-Proton Ratio in pp Collisons root s=0.9 and 7 TeV Measured by the ALICE Experiment
  • 2010
  • Ingår i: Physical Review Letters. - 1079-7114. ; 105:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at root s = 0.9 and 7 TeV during the initial running periods of the Large Hadron Collider. The measurement covers the transverse momentum interval 0.45 < p(t) < 1.05 GeV/c and rapidity vertical bar y vertical bar < 0.5. The ratio is measured to be R-vertical bar y vertical bar<0.5 = 0.957 +/- 0.006(stat) +/- 0.0014(syst) at 0.9 Tev and R-vertical bar y vertical bar<0.5 = 0.991 +/- 0.005 +/- 0.014(syst) at 7 TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.
  •  
4.
  • Aamodt, K., et al. (författare)
  • Production of pions, kaons and protons in pp collisions at root s=900 GeV with ALICE at the LHC
  • 2011
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 71:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The production of pi(+), pi(-), K+, K-, p, and (p) over bar at mid-rapidity has been measured in proton-proton collisions at root s = 900 GeV with the ALICE detector. Particle identification is performed using the specific energy loss in the inner tracking silicon detector and the time projection chamber. In addition, time-of-flight information is used to identify hadrons at higher momenta. Finally, the distinctive kink topology of the weak decay of charged kaons is used for an alternative measurement of the kaon transverse momentum (p(t)) spectra. Since these various particle identification tools give the best separation capabilities over different momentum ranges, the results are combined to extract spectra from p(t) = 100 MeV/c to 2.5 GeV/c. The measured spectra are further compared with QCD-inspired models which yield a poor description. The total yields and the mean pt are compared with previous measurements, and the trends as a function of collision energy are discussed.
  •  
5.
  • Aamodt, K., et al. (författare)
  • Transverse momentum spectra of charged particles in proton-proton collisions at root s=900 GeV with ALICE at the LHC
  • 2010
  • Ingår i: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 693:2, s. 53-68
  • Tidskriftsartikel (refereegranskat)abstract
    • The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at root s = 900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (vertical bar eta vertical bar < 0.8) over the transverse momentum range 0.15 < p(T) < 10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for vertical bar eta vertical bar < 0.8 is < p(T)>(INEL) = 0.483 +/- 0.001 (stat.) +/- 0.007 (syst.) GeV/c and < p(T)>(NSD) = 0.489 +/- 0.001 (stat.) +/- 0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger < p(T)> than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET. (C) 2010 Published by Elsevier B.V.
  •  
6.
  • Aamodt, K., et al. (författare)
  • Two-pion Bose-Einstein correlations in pp collisions at root s=900 GeV
  • 2010
  • Ingår i: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 82:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the measurement of two-pion correlation functions from pp collisions at root s = 900 GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the Hanbury Brown-Twiss radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at the Relativistic Heavy Ion Collider and at Tevatron, is not manifest in our data.
  •  
7.
  • Härdin, Hanna M., et al. (författare)
  • Clusters of reaction rates and concentrations in protein networks such as the phosphotransferase system
  • 2014
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 281:2, s. 531-548
  • Forskningsöversikt (refereegranskat)abstract
    • To understand the functioning of living cells, it is often helpful or even necessary to exploit inherent timescale disparities and focus on long-term dynamic behaviour. In the present study, we explore this type of behaviour for the biochemical network of the phosphotransferase system. We show that, during the slow phase that follows a fast initial transient, the network reaction rates are partitioned into clusters corresponding to connected parts of the reaction network. Rates within any of these clusters assume essentially the same value: differences within each cluster are vastly smaller than that from one cluster to another. This rate clustering induces an analogous clustering of the reactive compounds: only the molecular concentrations on the interface between these clusters are produced and consumed at substantially different rates and hence change considerably during the slow phase. The remaining concentrations essentially assume their steady-state values already by the end of the transient phase. Further, we find that this clustering phenomenon occurs for a large number of parameter values and also for models with different topologies; to each of these models, there corresponds a particular network partitioning. Our results show that, in spite of its complexity, the phosphotransferase system tends to behave in a rather simple (yet versatile) way. The persistence of clustering for the perturbed models we examined suggests that it is likely to be encountered in various environmental conditions, as well as in other signal transduction pathways with network structures similar to that of the phosphotransferase system.
  •  
8.
  • Martins Dos Santos, Vitor, et al. (författare)
  • Systems Biology in ELIXIR: modelling in the spotlight
  • 2022
  • Ingår i: F1000Research. - : F1000 Research Ltd. - 1759-796X .- 2046-1402. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • In this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR's future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities. These are: overcoming barriers to the wider uptake of systems biology; linking new and existing data to systems biology models; interoperability of systems biology resources; further development and embedding of systems medicine; provisioning of modelling as a service; building and coordinating capacity building and training resources; and supporting industrial embedding of systems biology. A set of objectives for the Community has been identified under four main headline areas: Standardisation and Interoperability, Technology, Capacity Building and Training, and Industrial Embedding. These are grouped into short-term (3-year), mid-term (6-year) and long-term (10-year) objectives.
  •  
9.
  • van Rotterdam, Bart, et al. (författare)
  • Steady-state cyclic electron transfer through solubilized Rhodobacter sphaeroides reaction centres
  • 2000
  • Ingår i: Biophysical Chemistry. - 1873-4200. ; 88:1-3, s. 137-152
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism, thermodynamics and kinetics of light-induced cyclic electron transfer have been studied in a model energy-transducing system consisting of solubilized Rhodobacter sphaeroides reaction center/light harvesting-1 complexes (so-called core complexes), horse heart cytochrome c and a ubiquinone-0/ubiquinol-0 pool. An analysis of the steady-state kinetics of cytochrome c reduction by ubiquinol-0, after a light-induced steady-state electron flow had been attained, showed that the rate of this reaction is primarily controlled by the one-electron oxidation of the ubiquinol-anion. Re-reduction of the light-oxidized reaction center primary donor by cytochrome c was measured at different reduction levels of the ubiquinone-0/ubiquinol-0 pool. These experiments involved single turnover flash excitation on top of background illumination that elicited steady-state cyclic electron transfer. At low reduction levels of the ubiquinone-0/ubiquinol-0 pool, the total cytochrome c concentration had a major control over the rate of reduction of the primary donor. This control was lost at higher reduction levels of the ubiquinone/ubiquinol-pool, and possible reasons for this behaviour are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy