SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Westman Annika) "

Sökning: WFRF:(Westman Annika)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Brinkmalm, Gunnar, et al. (författare)
  • An online nano-LC-ESI-FTICR-MS method for comprehensive characterization of endogenous fragments from amyloid β and amyloid precursor protein in human and cat cerebrospinal fluid.
  • 2012
  • Ingår i: Journal of mass spectrometry : JMS. - : Wiley. - 1096-9888 .- 1076-5174. ; 47:5, s. 591-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid precursor protein (APP) is the precursor protein to amyloid β (Aβ), the main constituent of senile plaques in Alzheimer's disease (AD). Endogenous Aβ peptides reflect the APP processing, and greater knowledge of different APP degradation pathways is important to understand the mechanism underlying AD pathology. When one analyzes longer Aβ peptides by low-energy collision-induced dissociation tandem mass spectrometry (MS/MS), mainly long b-fragments are observed, limiting the possibility to determine variations such as amino acid variants or post-translational modifications (PTMs) within the N-terminal half of the peptide. However, by using electron capture dissociation (ECD), we obtained a more comprehensive sequence coverage for several APP/Aβ peptide species, thus enabling a deeper characterization of possible variants and PTMs. Abnormal APP/Aβ processing has also been described in the lysosomal storage disease Niemann-Pick type C and the major large animal used for studying this disease is cat. By ECD MS/MS, a substitution of Asp7 → Glu in cat Aβ was identified. Further, sialylated core 1 like O-glycans at Tyr10, recently discovered in human Aβ (a previously unknown glycosylation type), were identified also in cat cerebrospinal fluid (CSF). It is therefore likely that this unusual type of glycosylation is common for (at least) species belonging to the magnorder Boreoeutheria. We here describe a detailed characterization of endogenous APP/Aβ peptide species in CSF by using an online top-down MS-based method.
  •  
3.
  • Brinkmalm, Gunnar, et al. (författare)
  • Soluble amyloid precursor protein α and β in CSF in Alzheimer's disease.
  • 2013
  • Ingår i: Brain research. - : Elsevier BV. - 1872-6240 .- 0006-8993. ; 1513, s. 117-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral accumulation of amyloid β (Aβ) is a pathological hallmark of Alzheimer's disease (AD). Proteolytic processing of amyloid precursor protein (APP) by α- or β-secretase results in two soluble metabolites, sAPPα and sAPPβ, respectively. However, previous data have shown that both α- and β-secretase have multiple cleavage sites. The aim of this study was to characterize the C-termini of sAPPα and sAPPβ in cerebrospinal fluid (CSF) by mass spectrometry (MS) and to evaluate whether different combinations of these fragments better separate between AD patients and controls by comparing two different sAPP immunoassays. Methods: Using immunoprecipitation and high resolution MS, the APP species present in CSF were investigated. CSF levels of sAPPα and sAPPβ from patients with AD (n=43) and from non-demented controls (n=44) were measured using AlphaLISA and MSD immunoassays that employ different antibodies for C-terminal recognition of sAPPα. Results: Four different C-terminal forms of sAPP were identified, sAPPβ-M671, sAPPβ-Y681, sAPPα-Q686, and sAPPα-K687 (APP770 numbering). Neither immunoassay for the sAPP species could separate the two patient groups. The correlation (R(2)) between the two immunoassays was 0.41 for sAPPα and 0.45 for sAPPβ. Conclusion: Using high resolution MS, we show here for the first time that sAPPα in CSF ends at Q686 and K687. The findings also support the conclusion from several previous studies that sAPPα and sAPPβ levels are unaltered in AD.
  •  
4.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • Explorative and targeted neuroproteomics in Alzheimer's disease.
  • 2015
  • Ingår i: Biochimica et biophysica acta. - : Elsevier BV. - 0006-3002. ; 1854:7, s. 769-778
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a progressive brain amyloidosis that injures brain regions involved in memory consolidation and other higher brain functions. Neuropathologically, the disease is characterized by accumulation of a 42 amino acid peptide called amyloid β (Aβ42) in extracellular senile plaques, intraneuronal inclusions of hyperphosphorylated tau protein in neurofibrillary tangles, and neuronal and axonal degeneration and loss. Biomarker assays capturing these pathologies have been developed for use on cerebrospinal fluid samples but there are additional molecular pathways that most likely contribute to the neurodegeneration and full clinical expression of AD. One way of learning more about AD pathogenesis is to identify novel biomarkers for these pathways and examine them in longitudinal studies of patients in different stages of the disease. Here, we discuss targeted proteomic approaches to study AD and AD-related pathologies in closer detail and explorative approaches to discover novel pathways that may contribute to the disease. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology.
  •  
5.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer's disease
  • 2014
  • Ingår i: Molecular Neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synaptic degeneration is an early pathogenic event in Alzheimer's disease, associated with cognitive impairment and disease progression. Cerebrospinal fluid biomarkers reflecting synaptic integrity would be highly valuable tools to monitor synaptic degeneration directly in patients. We previously showed that synaptic proteins such as synaptotagmin and synaptosomal-associated protein 25 (SNAP-25) could be detected in pooled samples of cerebrospinal fluid, however these assays were not sensitive enough for individual samples. Results: We report a new strategy to study synaptic pathology by using affinity purification and mass spectrometry to measure the levels of the presynaptic protein SNAP-25 in cerebrospinal fluid. By applying this novel affinity mass spectrometry strategy on three separate cohorts of patients, the value of SNAP-25 as a cerebrospinal fluid biomarker for synaptic integrity in Alzheimer's disease was assessed for the first time. We found significantly higher levels of cerebrospinal fluid SNAP-25 fragments in Alzheimer's disease, even in the very early stages, in three separate cohorts. Cerebrospinal fluid SNAP-25 differentiated Alzheimer's disease from controls with area under the curve of 0.901 (P < 0.0001). Conclusions: We developed a sensitive method to analyze SNAP-25 levels in individual CSF samples that to our knowledge was not possible previously. Our results support the notion that synaptic biomarkers may be important tools for early diagnosis, assessment of disease progression, and to monitor drug effects in treatment trials.
  •  
6.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • Targeting synaptic pathology with a novel affinity mass spectrometry approach.
  • 2014
  • Ingår i: Molecular & cellular proteomics : MCP. - 1535-9484. ; 13:10, s. 2584-92
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a novel strategy for studying synaptic pathology by concurrently measuring levels of four SNARE complex proteins from individual brain tissue samples. This method combines affinity purification and mass spectrometry and can be applied directly for studies of SNARE complex proteins in multiple species or modified to target other key elements in neuronal function. We use the technique to demonstrate altered levels of presynaptic proteins in Alzheimer disease patients and prion-infected mice.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Davidsson, Pia, 1962, et al. (författare)
  • Clinical mass spectrometry in neuroscience. Proteomics and peptidomics.
  • 2003
  • Ingår i: Cellular and molecular biology (Noisy-le-Grand, France). - 0145-5680 .- 1165-158X. ; 49:5, s. 681-8
  • Forskningsöversikt (refereegranskat)abstract
    • In this review we discuss the merits and drawbacks with the use of proteomic and peptidomic strategies for identification of proteins and peptides in their multidimensional interactions in complex biological processes. The progress in proteomics and peptidomics during the last years offer us new challenges to study changes in the protein and peptide synthesis. These strategies also offer new tools to follow post-translational modifications and other disturbed chemical processes that may be indicative of pathophysiological alteration(s). Furthermore these techniques can contribute to improvements in the diagnosis and therapy of neurodegenerative diseases, such as Alzheimer's disease, and psychiatric diseases, as depression and post traumatic stress disorders. We also consider different practical aspects of the applications of mass spectrometry in clinical neuroscience, illustrated by example from our laboratories. The new proteomic and peptidomic strategies will further enable the progress for clinical neuroscience research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (22)
rapport (2)
konferensbidrag (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Brinkmalm-Westman, A ... (16)
Blennow, Kaj, 1958 (14)
Brinkmalm, Gunnar (10)
Zetterberg, Henrik, ... (9)
Portelius, Erik, 197 ... (7)
Hansson, Oskar (4)
visa fler...
Minthon, Lennart (2)
Korsgren, Olle (2)
Wallin, Anders, 1950 (2)
Dejmek, Annika (2)
Thorsell, Annika, 19 ... (2)
Westman, Jeanette (2)
Olsson, Martin L (2)
Tuvemo, Torsten (2)
Storry, Jill (2)
Gobom, Johan (2)
Hult, Annika (2)
Andersson, K (1)
Aarsland, Dag (1)
Gustavsson, Mikael K (1)
Svensson, Mikael, 19 ... (1)
Puchades, Maja, 1969 (1)
af Geijerstam, Åsa, ... (1)
Wiksten Folkeryd, Je ... (1)
Liberg, Caroline, 19 ... (1)
Engblom, Charlotte, ... (1)
Hort, Sofia (1)
Norrman, Kimberly, 1 ... (1)
Westman, Maria, 1963 ... (1)
Rasmusson, Maria, 19 ... (1)
Björkelund, Cecilia, ... (1)
Hange, Dominique, 19 ... (1)
Svenningsson, Irene, ... (1)
Petersson, Eva-Lisa (1)
Andre, Malin (1)
Wallin, Lars (1)
Wikberg, Carl (1)
Blennow, Kaj (1)
Westman, Bo (1)
Jonsson, Lars (1)
Westling Allodi, Mar ... (1)
Teneberg, Susann, 19 ... (1)
Wahlgren, Mats (1)
Månsson, Jan-Eric, 1 ... (1)
Olejnicka, Beata (1)
Nilsson, Jonas, 1970 (1)
SILBERRING, J (1)
Moll, Kirsten (1)
Roos, Göran (1)
Lehtio, Janne (1)
visa färre...
Lärosäte
Göteborgs universitet (18)
Lunds universitet (7)
Uppsala universitet (5)
Karolinska Institutet (4)
Umeå universitet (2)
Högskolan Kristianstad (1)
visa fler...
Luleå tekniska universitet (1)
Stockholms universitet (1)
Örebro universitet (1)
Chalmers tekniska högskola (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (24)
Svenska (2)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (20)
Naturvetenskap (3)
Humaniora (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy