SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wharton Sonia) "

Sökning: WFRF:(Wharton Sonia)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Helbig, Manuel, et al. (författare)
  • Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923. ; 307
  • Forskningsöversikt (refereegranskat)abstract
    • The atmospheric boundary layer mediates the exchange of energy, matter, and momentum between the land surface and the free troposphere, integrating a range of physical, chemical, and biological processes and is defined as the lowest layer of the atmosphere (ranging from a few meters to 3 km). In this review, we investigate how continuous, automated observations of the atmospheric boundary layer can enhance the scientific value of co-located eddy covariance measurements of land-atmosphere fluxes of carbon, water, and energy, as are being made at FLUXNET sites worldwide. We highlight four key opportunities to integrate tower-based flux measurements with continuous, long-term atmospheric boundary layer measurements: (1) to interpret surface flux and atmospheric boundary layer exchange dynamics and feedbacks at flux tower sites, (2) to support flux footprint modelling, the interpretation of surface fluxes in heterogeneous and mountainous terrain, and quality control of eddy covariance flux measurements, (3) to support regional-scale modeling and upscaling of surface fluxes to continental scales, and (4) to quantify land-atmosphere coupling and validate its representation in Earth system models. Adding a suite of atmospheric boundary layer measurements to eddy covariance flux tower sites, and supporting the sharing of these data to tower networks, would allow the Earth science community to address new emerging research questions, better interpret ongoing flux tower measurements, and would present novel opportunities for collaborations between FLUXNET scientists and atmospheric and remote sensing scientists.
  •  
2.
  • Peltoniemi, Mikko, et al. (författare)
  • Does canopy mean nitrogen concentration explain variation in canopy light use efficiency across 14 contrasting forest sites?
  • 2012
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 1758-4469 .- 0829-318X. ; 32:2, s. 200-218
  • Tidskriftsartikel (refereegranskat)abstract
    • The maximum light use efficiency (LUE = gross primary production (GPP)/absorbed photosynthetic photon flux density (aPPFD)) of plant canopies has been reported to vary spatially and some of this variation has previously been attributed to plant species differences. The canopy nitrogen concentration [N] can potentially explain some of this spatial variation. However, the current paradigm of the N-effect on photosynthesis is largely based on the relationship between photosynthetic capacity (A(max)) and [N], i.e., the effects of [N] on photosynthesis rates appear under high PPFD. A maximum LUE-[N] relationship, if it existed, would influence photosynthesis in the whole range of PPFD. We estimated maximum LUE for 14 eddy-covariance forest sites, examined its [N] dependency and investigated how the [N]-maximum LUE dependency could be incorporated into a GPP model. In the model, maximum LUE corresponds to LUE under optimal environmental conditions before light saturation takes place (the slope of GPP vs. PPFD under low PPFD). Maximum LUE was higher in deciduous/mixed than in coniferous sites, and correlated significantly with canopy mean [N]. Correlations between maximum LUE and canopy [N] existed regardless of daily PPFD, although we expected the correlation to disappear under low PPFD when LUE was also highest. Despite these correlations, including [N] in the model of GPP only marginally decreased the root mean squared error. Our results suggest that maximum LUE correlates linearly with canopy [N], but that a larger body of data is required before we can include this relationship into a GPP model. Gross primary production will therefore positively correlate with [N] already at low PPFD, and not only at high PPFD as is suggested by the prevailing paradigm of leaf-level A(max)-[N] relationships. This finding has consequences for modelling GPP driven by temporal changes or spatial variation in canopy [N].
  •  
3.
  • Yi, Chuixiang, et al. (författare)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy