SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wiens R.C.) "

Sökning: WFRF:(Wiens R.C.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Cousin, A., et al. (författare)
  • Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils
  • 2015
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 249, s. 22-42
  • Tidskriftsartikel (refereegranskat)abstract
    • The ChemCam instrument onboard the Curiosity rover provides for the first time an opportunity to study martian soils at a sub-millimeter resolution. In this work, we analyzed 24 soil targets probed by ChemCam during the first 250 sols on Mars. Using the depth profile capability of the ChemCam LIBS (Laser-Induced Breakdown Spectroscopy) technique, we found that 45% of the soils contained coarse grains (>500 μm). Three distinct clusters have been detected: Cluster 1 shows a low SiO2 content; Cluster 2 corresponds to coarse grains with a felsic composition, whereas Cluster 3 presents a typical basaltic composition. Coarse grains from Cluster 2 have been mostly observed exposed in the vicinity of the landing site, whereas coarse grains from Clusters 1 and 3 have been detected mostly buried, and were found all along the rover traverse. The possible origin of these coarse grains was investigated. Felsic (Cluster 2) coarse grains have the same origin as the felsic rocks encountered near the landing site, whereas the origin of the coarse grains from Clusters 1 and 3 seems to be more global. Fine-grained soils (particle size < laser beam diameter which is between 300 and 500 μm) show a homogeneous composition all along the traverse, different from the composition of the rocks encountered at Gale. Although they contain a certain amount of hydrated amorphous component depleted in SiO2, possibly present as a surface coating, their overall chemical homogeneity and their close-to-basaltic composition suggest limited, or isochemical alteration, and a limited interaction with liquid water. Fine particles and coarse grains from Cluster 1 have a similar composition, and the former could derive from weathering of the latter. Overall martian soils have a bulk composition between that of fine particles and coarse grains. This work shows that the ChemCam instrument provides a means to study the variability of soil composition at a scale not achievable by bulk chemical analyses.
  •  
3.
  • Frostad, J. J., et al. (författare)
  • Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000-18: a geospatial modelling study
  • 2022
  • Ingår i: Lancet Global Health. - 2214-109X. ; 10:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels. Methods We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km x 5 km resolution in 98 LMICs based on 2.1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution. Findings Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205000 (95% uncertainty interval 147000-257000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution. Interpretation Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.
  •  
4.
  • Johnson, Jeffrey R., et al. (författare)
  • ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars
  • 2015
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 249, s. 74-92
  • Tidskriftsartikel (refereegranskat)abstract
    • The spectrometers on the Mars Science Laboratory (MSL) ChemCam instrument were used in passive mode to record visible/near-infrared (400–840 nm) radiance from the martian surface. Using the onboard ChemCam calibration targets’ housing as a reflectance standard, we developed methods to collect, calibrate, and reduce radiance observations to relative reflectance. Such measurements accurately reproduce the known reflectance spectra of other calibration targets on the rover, and represent the highest spatial resolution (0.65 mrad) and spectral sampling (<1 nm) visible/near-infrared reflectance spectra from a landed platform on Mars. Relative reflectance spectra of surface rocks and soils match those from orbital observations and multispectral data from the MSL Mastcam camera. Preliminary analyses of the band depths, spectral slopes, and reflectance ratios of the more than 2000 spectra taken during the first year of MSL operations demonstrate at least six spectral classes of materials distinguished by variations in ferrous and ferric components. Initial comparisons of ChemCam spectra to laboratory spectra of minerals and Mars analog materials demonstrate similarities with palagonitic soils and indications of orthopyroxene in some dark rocks. Magnesium-rich “raised ridges” tend to exhibit distinct near-infrared slopes. The ferric absorption downturn typically found for martian materials at <600 nm is greatly subdued in brushed rocks and drill tailings, consistent with their more ferrous nature. Calcium-sulfate veins exhibit the highest relative reflectances observed, but are still relatively red owing to the effects of residual dust. Such dust is overall less prominent on rocks sampled within the “blast zone” immediately surrounding the landing site. These samples were likely affected by the landing thrusters, which partially removed the ubiquitous dust coatings. Increased dust coatings on the calibration targets during the first year of the mission were documented by the ChemCam passive measurements as well. Ongoing efforts to model and correct for this dust component should improve calibration of the relative reflectance spectra. This will be useful as additional measurements are acquired during the rover’s future examinations of hematite-, sulfate-, and phyllosilicate-bearing materials near the base of Mt. Sharp that are spectrally active in the 400–840 nm region.
  •  
5.
  •  
6.
  • Lasue, J., et al. (författare)
  • Martian Eolian Dust Probed by ChemCam
  • 2018
  • Ingår i: Geophysical Research Letters. - : John Wiley & Sons. - 0094-8276 .- 1944-8007. ; 45:20, s. 10968-10977
  • Tidskriftsartikel (refereegranskat)abstract
    • The ubiquitous eolian dust on Mars plays important roles in the current sedimentary and atmospheric processes of the planet. The ChemCam instrument retrieves a consistent eolian dust composition at the submillimeter scale from every first laser shot on Mars targets. Its composition presents significant differences with the Aeolis Palus soils and the Bagnold dunes as it contains lower CaO and higher SiO2. The dust FeO and TiO2contents are also higher, probably associated with nanophase oxide components. The dust spectra show the presence of volatile elements (S and Cl), and the hydrogen content is similar to Bagnold sands but lower than Aeolis Palus soils. Consequently, the dust may be a contributor to the amorphous component of soils, but differences in composition indicate that the two materials are not equivalent.
  •  
7.
  •  
8.
  • Mangold, N., et al. (författare)
  • Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6568
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations from orbital spacecraft have shown that Jezero crater on Mars contains a prominent fan-shaped body of sedimentary rock deposited at its western margin. The Perseverance rover landed in Jezero crater in February 2021. We analyze images taken by the rover in the 3 months after landing. The fan has outcrop faces, which were invisible from orbit, that record the hydrological evolution of Jezero crater. We interpret the presence of inclined strata in these outcrops as evidence of deltas that advanced into a lake. In contrast, the uppermost fan strata are composed of boulder conglomerates, which imply deposition by episodic high-energy floods. This sedimentary succession indicates a transition from sustained hydrologic activity in a persistent lake environment to highly energetic short-duration fluvial flows.
  •  
9.
  • Melikechi, N., et al. (författare)
  • Correcting for variable laser-target distances of laser-induced breakdown spectroscopy measurements with ChemCam using emission lines of Martian dust spectra
  • 2014
  • Ingår i: Spectrochimica Acta Part B - Atomic Spectroscopy. - : Elsevier BV. - 0584-8547 .- 1873-3565. ; 96, s. 51-60
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of the Mars Science Laboratory, the ChemCam instrument acquires remote laser induced breakdown spectra at distances that vary between 1.56 m and 7 m. This variation in distance affects the intensities of the measured LIBS emission lines in non-trivial ways. To determine the behavior of a LIBS emission line with distance, it is necessary to separate the effects of many parameters such as laser energy, laser spot size, target homogeneity, and optical collection efficiency. These parameters may be controlled in a laboratory on Earth but for field applications or in space this is a challenge. In this paper, we show that carefully selected ChemCam LIBS emission lines acquired from the Martian dust can be used to build an internal proxy spectroscopic standard. This in turn, allows for a direct measurement of the effects of the distance of various LIBS emission lines and hence can be used to correct ChemCam LIBS spectra for distance variations. When tested on pre-launch LIBS calibration data acquired under Martian-like conditions and with controlled and well-calibrated targets, this approach yields much improved agreement between targets observed at various distances. This work lays the foundation for future implementation of automated routines to correct ChemCam spectra for differences caused by variable distance.
  •  
10.
  • Meslin, P.-Y., et al. (författare)
  • Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars
  • 2013
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 341:6153
  • Tidskriftsartikel (refereegranskat)abstract
    • The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy