SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wierenga Christina E.) "

Sökning: WFRF:(Wierenga Christina E.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Walton, Esther, et al. (författare)
  • Brain Structure in Acutely Underweight and Partially Weight-Restored Individuals With Anorexia Nervosa : A Coordinated Analysis by the ENIGMA Eating Disorders Working Group
  • 2022
  • Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 92:9, s. 730-738
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The pattern of structural brain abnormalities in anorexia nervosa (AN) is still not well understood. While several studies report substantial deficits in gray matter volume and cortical thickness in acutely underweight patients, others find no differences, or even increases in patients compared with healthy control subjects. Recent weight regain before scanning may explain some of this heterogeneity. To clarify the extent, magnitude, and de-pendencies of gray matter changes in AN, we conducted a prospective, coordinated meta-analysis of multicenter neuroimaging data.METHODS: We analyzed T1-weighted structural magnetic resonance imaging scans assessed with standardized methods from 685 female patients with AN and 963 female healthy control subjects across 22 sites worldwide. In addition to a case-control comparison, we conducted a 3-group analysis comparing healthy control subjects with acutely underweight AN patients (n = 466) and partially weight-restored patients in treatment (n = 251).RESULTS: In AN, reductions in cortical thickness, subcortical volumes, and, to a lesser extent, cortical surface area were sizable (Cohen's d up to 0.95), widespread, and colocalized with hub regions. Highlighting the effects of un-dernutrition, these deficits were associated with lower body mass index in the AN sample and were less pronounced in partially weight-restored patients.CONCLUSIONS: The effect sizes observed for cortical thickness deficits in acute AN are the largest of any psychiatric disorder investigated in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Consortium to date. These results confirm the importance of considering weight loss and renutrition in biomedical research on AN and underscore the importance of treatment engagement to prevent potentially long-lasting structural brain changes in this population.
  •  
2.
  • Smits, Hermelijn H, et al. (författare)
  • Commensal Gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced Th1 development.
  • 2004
  • Ingår i: European journal of immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 34:5, s. 1371-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Dendritic cells (DC) are the main orchestrators of specific immune responses. Depending on microbial information they encounter in peripheral tissues, they promote the development of Th1, Th2 or unpolarized Th cell responses. In this study we have investigated the immunomodulatory effect of non-pathogenic intestinal Gram-negative (Escherichia coli, Bacteroides vulgatus,Veillonella parvula, Pseudomonas aeruginosa) and Gram-positive (Bifidobacterium adolescentis, Enterococcus faecalis, Lactobacillus plantarum and Staphylococcus aureus) bacteria on human monocyte-derived DC (moDC). None of the Gram-positive bacteria (GpB) primed for Th1 or Th2 development. In contrast, despite the low levels of IL-12 they induce, all Gram-negative bacteria (GnB) primed moDC for enhanced Th1 cell development, which was dependent on IL-12 and an additional unidentified cofactor. Strikingly, GnB-matured moDC expressed elevated levels of p19 and p28 mRNA, the critical subunits of IL-23 and IL-27, respectively, suggesting that the IL-12 family members may jointly be responsible for their Th1-driving capacity. Purified major cell wall components of either GnB or GpB did not yield Th cell profiles identical to those obtained with whole bacteria, and could not explain the induction of the IL-12 family members nor Th1 priming by GnB. Importantly, this study gives indications that the expression of the different IL-12 family members is dictated by different priming conditions of immature DC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy