SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wightman Raymond) "

Sökning: WFRF:(Wightman Raymond)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bonfanti, Alessandra, et al. (författare)
  • Stiffness transitions in new walls post-cell division differ between Marchantia polymorpha gemmae and Arabidopsis thaliana leaves
  • 2023
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424. ; 120:41
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant morphogenesis is governed by the mechanics of the cell wall—a stiff and thin polymeric box that encloses the cells. The cell wall is a highly dynamic composite material. New cell walls are added during cell division. As the cells continue to grow, the properties of cell walls are modulated to undergo significant changes in shape and size without breakage. Spatial and temporal variations in cell wall mechanical properties have been observed. However, how they relate to cell division remains an outstanding question. Here, we combine time-lapse imaging with local mechanical measurements via atomic force microscopy to systematically map the cell wall’s age and growth, with their stiffness. We make use of two systems, Marchantia polymorpha gemmae, and Arabidopsis thaliana leaves. We first characterize the growth and cell division of M. polymorpha gemmae. We then demonstrate that cell division in M. polymorpha gemmae results in the generation of a temporary stiffer and slower-growing new wall. In contrast, this transient phenomenon is absent in A. thaliana leaves. We provide evidence that this different temporal behavior has a direct impact on the local cell geometry via changes in the junction angle. These results are expected to pave the way for developing more realistic plant morphogenetic models and to advance the study into the impact of cell division on tissue growth.
  •  
2.
  • Michelin, Gaël, et al. (författare)
  • Spatio-temporal registration of 3D microscopy image sequences of arabidopsis floral meristems
  • 2016
  • Ingår i: Biomedical Imaging, IEEE International Symposium on. - 9781479923519 - 9781479923496
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The shoot apical meristem (SAM) is at the origin of all the plant above-ground organs (including stems, leaves and flowers) and is a biological object of interest for the understanding of plant morphogenesis. The quantification of tissue growth at a cellular level requires the analysis of 3D microscopic image sequences of developing meristems. To address inter-individual variability, it is also required to compare individuals. This obviously implies the ability to process inter-individual registration, i.e. to compute spatial and temporal correspondences between sequences from different meristems. In the present work, we propose a spatial registration method dedicated to microscopy floral meristem (FM) images, and the identification, for a given still image of a meristem, of its best corresponding time-point in a sequence of an other individual (temporal registration).
  •  
3.
  • Refahi, Yassin, et al. (författare)
  • A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control
  • 2021
  • Ingår i: Developmental Cell. - : Elsevier BV. - 1534-5807. ; 56:4, s. 8-556
  • Tidskriftsartikel (refereegranskat)abstract
    • We have analyzed the link between the gene regulation and growth during the early stages of flower development in Arabidopsis. Starting from time-lapse images, we generated a 4D atlas of early flower development, including cell lineage, cellular growth rates, and the expression patterns of regulatory genes. This information was introduced in MorphoNet, a web-based platform. Using computational models, we found that the literature-based molecular network only explained a minority of the gene expression patterns. This was substantially improved by adding regulatory hypotheses for individual genes. Correlating growth with the combinatorial expression of multiple regulators led to a set of hypotheses for the action of individual genes in morphogenesis. This identified the central factor LEAFY as a potential regulator of heterogeneous growth, which was supported by quantifying growth patterns in a leafy mutant. By providing an integrated view, this atlas should represent a fundamental step toward mechanistic models of flower development. Refahi and Zardilis et al. present a 4D atlas of early flower development. They combine growth and gene expression to construct a molecular network model that correctly predicts a large majority of 28 gene expression patterns. This model suggests hypotheses for the combined action of regulatory genes in morphogenesis.
  •  
4.
  • Sampathkumar, Arun, et al. (författare)
  • Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells
  • 2014
  • Ingår i: eLife. - 2050-084X. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Although it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live- imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules. This feedback loop is regulated: cell-shape derived stresses could be overridden by imposed tissue level stresses, showing how competition between subcellular and supracellular cues control microtubule behavior. Furthermore, at the microtubule level, we identified an amplification mechanism in which mechanical stress promotes the microtubule response to stress by increasing severing activity. These multiscale feedbacks likely contribute to the robustness of microtubule behavior in plant epidermis.
  •  
5.
  • Willis, Lisa, et al. (författare)
  • Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 113:51, s. 8238-8246
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell size and growth kinetics are fundamental cellular properties with important physiological implications. Classical studies on yeast, and recently on bacteria, have identified rules for cell size regulation in single cells, but in the more complex environment of multicellular tissues, data have been lacking. In this study, to characterize cell size and growth regulation in a multicellular context, we developed a 4D imaging pipeline and applied it to track and quantify epidermal cells over 3-4 d in Arabidopsis thaliana shoot apical meristems. We found that a cell size checkpoint is not the trigger for G2/M or cytokinesis, refuting the unexamined assumption that meristematic cells trigger cell cycle phases upon reaching a critical size. Our data also rule out models in which cells undergo G2/M at a fixed time after birth, or by adding a critical size increment between G2/M transitions. Rather, cell size regulation was intermediate between the critical size and critical increment paradigms, meaning that cell size fluctuations decay by ∼75% in one generation compared with 100% (critical size) and 50% (critical increment). Notably, this behavior was independent of local cell-cell contact topologies and of position within the tissue. Cells grew exponentially throughout the first >80% of the cell cycle, but following an asymmetrical division, the small daughter grew at a faster exponential rate than the large daughter, an observation that potentially challenges present models of growth regulation. These growth and division behaviors place strong constraints on quantitative mechanistic descriptions of the cell cycle and growth control.
  •  
6.
  • Yang, Weibing, et al. (författare)
  • Molecular mechanism of cytokinin-activated cell division in Arabidopsis
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 371:6536, s. 1350-1355
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitogens trigger cell division in animals. In plants, cytokinins, a group of phytohormones derived from adenine, stimulate cell proliferation. Cytokinin signaling is initiated by membrane-associated histidine kinase receptors and transduced through a phosphorelay system. We show that in the Arabidopsis shoot apical meristem (SAM), cytokinin regulates cell division by promoting nuclear shuttling of Myb-domain protein 3R4 (MYB3R4), a transcription factor that activates mitotic gene expression. Newly synthesized MYB3R4 protein resides predominantly in the cytoplasm. At the G2-to-M transition, rapid nuclear accumulation of MYB3R4-consistent with an associated transient peak in cytokinin concentration-feeds a positive feedback loop involving importins and initiates a transcriptional cascade that drives mitosis and cytokinesis. An engineered nuclear-restricted MYB3R4 mimics the cytokinin effects of enhanced cell proliferation and meristem growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy