SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wijmenga Sybren S) "

Sökning: WFRF:(Wijmenga Sybren S)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chabes, Andrei, et al. (författare)
  • Yeast ribonucleotide reductase has a heterodimeric iron-radical-containing subunit
  • 2000
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 97:6, s. 2474-2479
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides. Eukaryotes have an alpha(2)beta(2) form of RNR consisting of two homodimeric subunits, proteins R1 (alpha(2)) and R2 (beta(2)). The R1 protein is the business end of the enzyme containing the active site and the binding sites for allosteric effectors. The R2 protein is a radical storage device containing an iron center-generated tyrosyl free radical. Previous work has identified an RNR protein in yeast, Rnr4p, which is homologous to other R2 proteins but lacks a number of conserved amino acid residues involved in iron binding. Using highly purified recombinant yeast RNR proteins, we demonstrate that the crucial role of Rnr4p (beta') is to fold correctly and stabilize the radical-storing Rnr2p by forming a stable 1:1 Rnr2p/Rnr4p complex. This complex sediments at 5.6 S as a betabeta' heterodimer in a sucrose gradient. In the presence of Rnr1p, both polypeptides of the Rnr2p/Rnr4p heterodimer cosediment at 9.7 S as expected for an alpha(2)betabeta' heterotetramer, where Rnr4p plays an important role in the interaction between the alpha(2) and the betabeta ' subunits. The specific activity of the Rnr2p complexed with Rnr4p is 2,250 nmol deoxycytidine 5'-diphosphate formed per min per mg, whereas the homodimer of Rnr2p shows no activity. This difference in activity may be a consequence of the different conformations of the inactive homodimeric Rnr2p and the active Rnr4p-bound form, as shown by CD spectroscopy. Taken together, our results show that the Rnr2p/Rnr4p heterodimer is the active form of the yeast RNR small subunit.
  •  
2.
  •  
3.
  • Larsson, Göran, et al. (författare)
  • A high-resolution HCANH experiment with enhanced sensitivity via multiple quantum line narrowing
  • 1999
  • Ingår i: Journal of Biomolecular NMR. - 0925-2738 .- 1573-5001. ; 14:2, s. 169-174
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a 3D constant-time HCANH experiment (CTSL-HCANH) that uses the slower relaxation of multiple-quantum coherence to increase sensitivity and provides high C(α) resolution. In this experiment the H(α) of the (H(α), C(α)) multiple quanta are selectively spin locked, so that H(α) chemical shift evolution and (1) H-(1)H J-dephasing become ineffective during the relatively long delay needed for C(α) to N coherence transfer. As compared to an HCANH experiment that uses C(α) single-quantum coherence, an average enhancement of 20% was observed on calmodulin in complex with the binding domain of the transcription factor SEF2-1. Compared to CBCANH the signal intensity is approximately twice as good. The favorable relaxation properties of multiple quanta, together with the outstanding C(α) resolution, make the experiment a very good complement to CBCANH and CBCA(CO)NH for sequential assignment of larger proteins for which deuteration is not yet necessary.
  •  
4.
  • Larsson, Göran, et al. (författare)
  • Backbone dynamics of a symmetric calmodulin dimer in complex with the calmodulin-binding domain of the basic-helix-loop-helix transcription factor SEF2-1/E2-2 : a highly dynamic complex.
  • 2005
  • Ingår i: Biophys J. - 0006-3495. ; 89:2, s. 1214-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Calmodulin (CaM) interacts specifically as a dimer with some dimeric basic-Helix-Loop-Helix (bHLH) transcription factors via a novel high affinity binding mode. Here we report a study of the backbone dynamics by (15)N-spin relaxation on the CaM dimer in complex with a dimeric peptide that mimics the CaM binding region of the bHLH transcription factor SEF2-1. The relaxation data were measured at multiple magnetic fields, and analyzed in a model-free manner using in-house written software designed to detect nanosecond internal motion. Besides picosecond motions, all residues also experience internal motion with an effective correlation time of approximately 2.5 ns with squared order parameter (S(2)) of approximately 0.75. Hydrodynamic calculations suggest that this can be attributed to motions of the N- and C-terminal domains of the CaM dimer in the complex. Moreover, residues with significant exchange broadening are found. They are clustered in the CaM:SEF2-1mp binding interface, the CaM:CaM dimer interface, and in the flexible helix connecting the CaM N- and C-terminal domains, and have similar exchange times (approximately 50 micros), suggesting a cooperative mechanism probably caused by protein:protein interactions. The dynamic features presented here support the conclusion that the conformationally heterogeneous bHLH mimicking peptide trapped inside the CaM dimer exchanges between different binding sites on both nanosecond and microsecond timescales. Nature has thus found a way to specifically recognize a relatively ill-fitting target. This novel mode of target-specific binding, which neither belongs to lock-and-key nor induced-fit binding, is characterized by dimerization and continuous exchange between multiple flexible binding alternatives.
  •  
5.
  •  
6.
  • Olofsson, Anders, et al. (författare)
  • Probing solvent accessibility of transthyretin amyloid by solution NMR spectroscopy.
  • 2004
  • Ingår i: J Biol Chem. - 0021-9258. ; 279:7, s. 5699-707
  • Tidskriftsartikel (refereegranskat)abstract
    • The human plasma protein transthyretin (TTR) may form fibrillar protein deposits that are associated with both inherited and idiopathic amyloidosis. The present study utilizes solution nuclear magnetic resonance spectroscopy, in combination with hydrogen/deuterium exchange, to determine residue-specific solvent protection factors within the fibrillar structure of the clinically relevant variant, TTRY114C. This novel approach suggests a fibril core comprised of the six beta-strands, A-B-E-F-G-H, which retains a native-like conformation. Strands C and D are dislocated from their native edge region and become solvent-exposed, leaving a new interface involving strands A and B open for intermolecular interactions. Our results further support a native-like intermolecular association between strands F-F' and H-H' with a prolongation of these beta-strands and, interestingly, with a possible shift in beta-strand register of the subunit assembly. This finding may explain previous observations of a monomeric intermediate preceding fibril formation. A structural model based on our results is presented.
  •  
7.
  • Rosenling, Therese, et al. (författare)
  • The Impact of Delayed Storage on the Measured Proteome and Metabolome of Human Cerebrospinal Fluid
  • 2011
  • Ingår i: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 57:12, s. 1703-1711
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Because cerebrospinal fluid (CSF) is in close contact with diseased areas in neurological disorders, it is an important source of material in the search for molecular biomarkers. However, sample handling for CSF collected from patients in a clinical setting might not always be adequate for use in proteomics and metabolomics studies. METHODS: We left CSF for 0, 30, and 120 min at room temperature immediately after sample collection and centrifugation/removal of cells. After tryptic digestion at 2 laboratories by nanoLC Orbitrap-MS and chipLC QTOF-MS, CSF proteomes were analyzed. Metabolome analysis was performed at 3 laboratories by NMR, GC-MS, and LC-MS. Targeted analyses of cystatin C and albumin were performed by LC-MS/MS in the selected reaction monitoring mode. RESULTS: We did not find significant changes in the measured proteome and metabolome of CSF stored at room temperature after centrifugation, except for 2 peptides and 1 metabolite, 2,3,4-trihydrobutanoic acid, of 5780 identified peptides and 93 identified metabolites. A sensitive protein stability marker, cystatin C, was not affected. CONCLUSIONS: The measured proteome and metabolome of centrifuged, human CSF is stable at room temperature for up to 2 hours. We cannot exclude, however, that changes undetectable with our current methodology, such as denaturation or proteolysis, might occur due to sample handling conditions. The stability we observed gives laboratory personnel at the collection site sufficient time to aliquot samples before freezing and storage at -80 °C.
  •  
8.
  •  
9.
  • Stoop, Marcel P, et al. (författare)
  • Quantitative proteomics and metabolomics analysis of normal human cerebrospinal fluid samples.
  • 2010
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 9:9, s. 2063-75
  • Tidskriftsartikel (refereegranskat)abstract
    • The analysis of cerebrospinal fluid (CSF) is used in biomarker discovery studies for various neurodegenerative central nervous system (CNS) disorders. However, little is known about variation of CSF proteins and metabolites between patients without neurological disorders. A baseline for a large number of CSF compounds appears to be lacking. To analyze the variation in CSF protein and metabolite abundances in a number of well-defined individual samples of patients undergoing routine, non-neurological surgical procedures, we determined the variation of various proteins and metabolites by multiple analytical platforms. A total of 126 common proteins were assessed for biological variations between individuals by ESI-Orbitrap. A large spread in inter-individual variation was observed (relative standard deviations [RSDs] ranged from 18 to 148%) for proteins with both high abundance and low abundance. Technical variation was between 15 and 30% for all 126 proteins. Metabolomics analysis was performed by means of GC-MS and nuclear magnetic resonance (NMR) imaging and amino acids were specifically analyzed by LC-MS/MS, resulting in the detection of more than 100 metabolites. The variation in the metabolome appears to be much more limited compared with the proteome: the observed RSDs ranged from 12 to 70%. Technical variation was less than 20% for almost all metabolites. Consequently, an understanding of the biological variation of proteins and metabolites in CSF of neurologically normal individuals appears to be essential for reliable interpretation of biomarker discovery studies for CNS disorders because such results may be influenced by natural inter-individual variations. Therefore, proteins and metabolites with high variation between individuals ought to be assessed with caution as candidate biomarkers because at least part of the difference observed between the diseased individuals and the controls will not be caused by the disease, but rather by the natural biological variation between individuals.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy