SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wikelski Martin) "

Search: WFRF:(Wikelski Martin)

  • Result 1-10 of 26
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Broekman, Maarten J. E., et al. (author)
  • Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data
  • 2022
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 31:8, s. 1526-1541
  • Journal article (peer-reviewed)abstract
    • Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species.Location: Worldwide.Time period: 1998-2021.Major taxa studied: Forty-nine terrestrial mammal species.Methods: Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types.Results: IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively.Main conclusions: We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data.
  •  
2.
  • Bengtsson, Daniel, et al. (author)
  • Does influenza A virus infection affect movement behaviour during stopover in its wild reservoir host?
  • 2016
  • In: The Royal Society. - : The Royal Society. - 2054-5703. ; 3:2
  • Journal article (peer-reviewed)abstract
    • The last decade has seen a surge in research on avian influenza A viruses (IAVs), in part fuelled by the emergence, spread and potential zoonotic importance of highly pathogenic virus subtypes. The mallard (Anas platyrhynchos) is the most numerous and widespread dabbling duck in the world, and one of the most important natural hosts for studying IAV transmission dynamics. In order to predict the likelihood of IAV transmission between individual ducks and to other hosts, as well as between geographical regions, it is important to understand how IAV infection affects the host. In this study, we analysed the movements of 40 mallards equipped with GPS transmitters and three-dimensional accelerometers, of which 20 were naturally infected with low pathogenic avian influenza virus (LPAIV), at a major stopover site in the Northwest European flyway. Movements differed substantially between day and night, as well as between mallards returning to the capture site and those feeding in natural habitats. However, movement patterns did not differ between LPAIV infected and uninfected birds. Hence, LPAIV infection probably does not affect mallard movements during stopover, with high possibility of virus spread along the migration route as a consequence.
  •  
3.
  • Bengtsson, Daniel, et al. (author)
  • Movements, Home-Range Size and Habitat Selection of Mallards during Autumn Migration
  • 2014
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:6
  • Journal article (peer-reviewed)abstract
    • The mallard (Anas platyrhynchos) is a focal species in game management, epidemiology and ornithology, but comparably little research has focused on the ecology of the migration seasons. We studied habitat use, time-budgets, home-range sizes, habitat selection, and movements based on spatial data collected with GPS devices attached to wild mallards trapped at an autumn stopover site in the Northwest European flyway. Sixteen individuals (13 males, 3 females) were followed for 15-38 days in October to December 2010. Forty-nine percent (SD = 8.4%) of the ducks' total time, and 85% of the day-time (SD = 28.3%), was spent at sheltered reefs and bays on the coast. Two ducks used ponds, rather than coast, as day-roosts instead. Mallards spent most of the night (76% of total time, SD = 15.8%) on wetlands, mainly on alvar steppe, or in various flooded areas (e.g. coastal meadows). Crop fields with maize were also selectively utilized. Movements between roosting and foraging areas mainly took place at dawn and dusk, and the home-ranges observed in our study are among the largest ever documented for mallards (mean = 6,859 ha; SD = 5,872 ha). This study provides insights into relatively unknown aspects of mallard ecology. The fact that autumn-staging migratory mallards have a well-developed diel activity pattern tightly linked to the use of specific habitats has implications for wetland management, hunting and conservation, as well as for the epidemiology of diseases shared between wildlife and domestic animals.
  •  
4.
  • Bowlin, Melissa, et al. (author)
  • Grand Challenges in Migration Biology
  • 2010
  • In: Integrative and Comparative Biology. - : Oxford University Press (OUP). - 1540-7063 .- 1557-7023. ; 50:3, s. 261-279
  • Conference paper (peer-reviewed)abstract
    • Billions of animals migrate each year. To successfully reach their destination, migrants must have evolved an appropriate genetic program and suitable developmental, morphological, physiological, biomechanical, behavioral, and life-history traits. Moreover, they must interact successfully with biotic and abiotic factors in their environment. Migration therefore provides an excellent model system in which to address several of the "grand challenges" in organismal biology. Previous research on migration, however, has often focused on a single aspect of the phenomenon, largely due to methodological, geographical, or financial constraints. Integrative migration biology asks 'big questions' such as how, when, where, and why animals migrate, which can be answered by examining the process from multiple ecological and evolutionary perspectives, incorporating multifaceted knowledge from various other scientific disciplines, and using new technologies and modeling approaches, all within the context of an annual cycle. Adopting an integrative research strategy will provide a better understanding of the interactions between biological levels of organization, of what role migrants play in disease transmission, and of how to conserve migrants and the habitats upon which they depend.
  •  
5.
  • Garde, Baptiste, et al. (author)
  • Fine-scale changes in speed and altitude suggest protean movements in homing pigeon flights
  • 2021
  • In: Royal Society Open Science. - : The Royal Society. - 2054-5703. ; 8:5
  • Journal article (peer-reviewed)abstract
    • The power curve provides a basis for predicting adjustments that animals make in flight speed, for example in relation to wind, distance, habitat foraging quality and objective. However, relatively few studies have examined how animals respond to the landscape below them, which could affect speed and power allocation through modifications in climb rate and perceived predation risk. We equipped homing pigeons (Columba livia) with high-frequency loggers to examine how flight speed, and hence effort, varies in relation to topography and land cover. Pigeons showed mixed evidence for an energy-saving strategy, as they minimized climb rates by starting their ascent ahead of hills, but selected rapid speeds in their ascents. Birds did not modify their speed substantially in relation to land cover, but used higher speeds during descending flight, highlighting the importance of considering the rate of change in altitude before estimating power use from speed. Finally, we document an unexpected variability in speed and altitude over fine scales; a source of substantial energetic inefficiency. We suggest this may be a form of protean behaviour adopted to reduce predation risk when flocking is not an option, and that such a strategy could be widespread.
  •  
6.
  • Gauld, Jethro G., et al. (author)
  • Hotspots in the grid : Avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and North Africa
  • 2022
  • In: Journal of Applied Ecology. - : John Wiley & Sons. - 0021-8901 .- 1365-2664. ; 59:6, s. 1496-1512
  • Journal article (peer-reviewed)abstract
    • Wind turbines and power lines can cause bird mortality due to collision or electrocution. The biodiversity impacts of energy infrastructure (EI) can be minimised through effective landscape-scale planning and mitigation. The identification of high-vulnerability areas is urgently needed to assess potential cumulative impacts of EI while supporting the transition to zero carbon energy. We collected GPS location data from 1,454 birds from 27 species susceptible to collision within Europe and North Africa and identified areas where tracked birds are most at risk of colliding with existing EI. Sensitivity to EI development was estimated for wind turbines and power lines by calculating the proportion of GPS flight locations at heights where birds were at risk of collision and accounting for species' specific susceptibility to collision. We mapped the maximum collision sensitivity value obtained across all species, in each 5 x 5 km grid cell, across Europe and North Africa. Vulnerability to collision was obtained by overlaying the sensitivity surfaces with density of wind turbines and transmission power lines. Results: Exposure to risk varied across the 27 species, with some species flying consistently at heights where they risk collision. For areas with sufficient tracking data within Europe and North Africa, 13.6% of the area was classified as high sensitivity to wind turbines and 9.4% was classified as high sensitivity to transmission power lines. Sensitive areas were concentrated within important migratory corridors and along coastlines. Hotspots of vulnerability to collision with wind turbines and transmission power lines (2018 data) were scattered across the study region with highest concentrations occurring in central Europe, near the strait of Gibraltar and the Bosporus in Turkey. Synthesis and applications. We identify the areas of Europe and North Africa that are most sensitive for the specific populations of birds for which sufficient GPS tracking data at high spatial resolution were available. We also map vulnerability hotspots where mitigation at existing EI should be prioritised to reduce collision risks. As tracking data availability improves our method could be applied to more species and areas to help reduce bird-EI conflicts.
  •  
7.
  • Jax, Elinor, et al. (author)
  • Comparative Genomics of the Waterfowl Innate Immune System
  • 2022
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 39:8
  • Journal article (peer-reviewed)abstract
    • Animal species differ considerably in their ability to fight off infections. Finding the genetic basis of these differences is not easy, as the immune response is comprised of a complex network of proteins that interact with one another to defend the body against infection. Here, we used population- and comparative genomics to study the evolutionary forces acting on the innate immune system in natural hosts of the avian influenza virus (AIV). For this purpose, we used a combination of hybrid capture, next- generation sequencing and published genomes to examine genetic diversity, divergence, and signatures of selection in 127 innate immune genes at a micro- and macroevolutionary time scale in 26 species of waterfowl. We show across multiple immune pathways (AIV-, toll-like-, and RIG-I -like receptors signalling pathways) that genes involved genes in pathogen detection (i.e., toll-like receptors) and direct pathogen inhibition (i.e., antimicrobial peptides and interferon-stimulated genes), as well as host proteins targeted by viral antagonist proteins (i.e., mitochondrial antiviral-signaling protein, [MAVS]) are more likely to be polymorphic, genetically divergent, and under positive selection than other innate immune genes. Our results demonstrate that selective forces vary across innate immune signaling signalling pathways in waterfowl, and we present candidate genes that may contribute to differences in susceptibility and resistance to infectious diseases in wild birds, and that may be manipulated by viruses. Our findings improve our understanding of the interplay between host genetics and pathogens, and offer the opportunity for new insights into pathogenesis and potential drug targets. 
  •  
8.
  • Jax, Elinor, et al. (author)
  • Health monitoring in birds using bio-loggers and whole blood transcriptomics
  • 2021
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Monitoring and early detection of emerging infectious diseases in wild animals is of crucial global importance, yet reliable ways to measure immune status and responses are lacking for animals in the wild. Here we assess the usefulness of bio-loggers for detecting disease outbreaks in free-living birds and confirm detailed responses using leukocyte composition and large-scale transcriptomics. We simulated natural infections by viral and bacterial pathogens in captive mallards (Anas platyrhynchos), an important natural vector for avian influenza virus. We show that body temperature, heart rate and leukocyte composition change reliably during an acute phase immune response. Using genome-wide gene expression profiling of whole blood across time points we confirm that immunostimulants activate pathogen-specific gene regulatory networks. By reporting immune response related changes in physiological and behavioural traits that can be studied in free-ranging populations, we provide baseline information with importance to the global monitoring of zoonotic diseases.
  •  
9.
  • Jetz, Walter, et al. (author)
  • Biological Earth observation with animal sensors
  • 2022
  • In: Trends in Ecology & Evolution. - : Elsevier. - 0169-5347 .- 1872-8383. ; 37:4, s. 293-298
  • Journal article (peer-reviewed)abstract
    • Space-based tracking technology using low-cost miniature tags is now delivering data on fine-scale animal movement at near-global scale. Linked with remotely sensed environmental data, this offers a biological lens on habitat integrity and connectivity for conservation and human health; a global network of animal sentinels of environmental change.
  •  
10.
  • Kleyheeg, Erik, et al. (author)
  • A Comprehensive Model for the Quantitative Estimation of Seed Dispersal by Migratory Mallards
  • 2019
  • In: Frontiers in Ecology and Evolution. - : Frontiers Media S.A.. - 2296-701X. ; 7, s. 1-14
  • Journal article (peer-reviewed)abstract
    • Long-distance seed dispersal is an important ecosystem service provided by migratory animals. Plants inhabiting discrete habitats, like lakes and wetlands, experience dispersal limitation, and rely heavily on zoochory for their spatial population dynamics. Granivorous waterbirds may disperse viable seeds of wetland plants over long distances during migration. The limited knowledge of waterbird migration has long hampered the evaluation of the importance of waterbirds in seed dispersal, requiring key metrics such as realistic dispersal distances. Using recent GPS tracking of mallards during spring migration, we built a mechanistic seed dispersal model to estimate realistic dispersal distances. Mallards are abundant, partially migratory ducks known to consume seeds of >300 European plant species. Based on the tracking data, we informed a mallard migration simulator to obtain a probabilistic spring migration model for the mallard population wintering at Lake Constance in Southern Germany. We combined the spring migration model with seed retention curves to develop seed dispersal kernels. We also assessed the effects of pre-migratory fasting and the availability of suitable deposition habitats for aquatic and wetland plants. Our results show that mallards at Lake Constance can disperse seeds in the northeastern direction over median distances of 293 and 413 km for seeds with short and long retention times, respectively, assuming a departure immediately after foraging. Pre-migratory fasting strongly affected the dispersal potential, with only 1-7% of ingested seeds left for dispersal after fasting for 12 h. Availability of a suitable deposition habitat was generally <5% along the migratory flyway. The high probability of seed deposition in a freshwater habitat during the first stopover, after the mallards completed the first migratory flight, makes successful dispersal most likely to happen at 204-322 km from Lake Constance. We concluded that the directed long-distance dispersal of plant seeds, realized by mallards on spring migration, may contribute significantly to large scale spatial plant population dynamics, including range expansion in response to shifting temperature and rainfall patterns under global warming. Our dispersal model is the first to incorporate detailed behavior of migratory waterbirds and can be readily adjusted to include other vector species when tracking data are available.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 26
Type of publication
journal article (23)
other publication (2)
conference paper (1)
Type of content
peer-reviewed (24)
other academic/artistic (2)
Author/Editor
van Toor, Mariëlle L ... (8)
Hedenström, Anders (4)
Waldenström, Jonas, ... (4)
Bengtsson, Daniel (3)
Waldenström, Jonas (3)
Hasselquist, Dennis (2)
show more...
Olsen, Björn (2)
Elmberg, Johan (2)
Strandberg, Roine (2)
Tolf, Conny (2)
Mueller, Thomas (2)
Gunnarsson, Gunnar (2)
Avril, Alexis (2)
Baglione, Vittorio (2)
Ryll, Bettina (2)
Sapir, Nir (2)
Wolf, Jochen B. W. (1)
Schmidt, Niels Marti ... (1)
Unneberg, Per (1)
Skov, Henrik (1)
Wang, Qiang (1)
Lindström, Åke (1)
Grabherr, Manfred (1)
Mysterud, Atle (1)
Cagnacci, Francesca (1)
Gehr, Benedikt (1)
Heurich, Marco (1)
Söderquist, Pär (1)
Altmann, Jeanne (1)
Araujo, Miguel B. (1)
Schulz, Holger (1)
Klein, Karsten (1)
Schreiber, Falk (1)
Alerstam, Thomas (1)
Klaassen, Raymond (1)
Åkesson, Susanne (1)
Kulikova, Olga (1)
Andren, Henrik (1)
Persson, Jens (1)
Aronsson, Malin (1)
Linnell, John D. C. (1)
Odden, John (1)
Mattisson, Jenny (1)
Ryan, Peter G. (1)
Roulin, Alexandre (1)
Cruz, Sebastian (1)
Eriksson, Gustaw (1)
Sekar, Vaishnovi (1)
Schmidt, Matthias (1)
Lameris, Thomas K. (1)
show less...
University
Lund University (11)
Linnaeus University (11)
Uppsala University (6)
Kristianstad University College (2)
Stockholm University (2)
Swedish University of Agricultural Sciences (1)
Language
English (26)
Research subject (UKÄ/SCB)
Natural sciences (26)
Medical and Health Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view