SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wille Holger) "

Search: WFRF:(Wille Holger)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cable, Jennifer, et al. (author)
  • Progress in vaccine development for infectious diseases : a Keystone Symposia report
  • 2023
  • In: Annals of the New York Academy of Sciences. - : John Wiley & Sons. - 0077-8923 .- 1749-6632. ; 1524:1, s. 65-86
  • Journal article (peer-reviewed)abstract
    • The COVID-19 pandemic has taught us many things, among the most important of which is that vaccines are one of the cornerstones of public health that help make modern longevity possible. While several different vaccines have been successful at stemming the morbidity and mortality associated with various infectious diseases, many pathogens/diseases remain recalcitrant to the development of effective vaccination. Recent advances in vaccine technology, immunology, structural biology, and other fields may yet yield insight that will address these diseases; they may also help improve societies' preparedness for future pandemics. On June 1-4, 2022, experts in vaccinology from academia, industry, and government convened for the Keystone symposium "Progress in Vaccine Development for Infectious Diseases" to discuss state-of-the-art technologies, recent advancements in understanding vaccine-mediated immunity, and new aspects of antigen design to aid vaccine effectiveness.
  •  
2.
  • Lau, Angus, et al. (author)
  • alpha-Synuclein strains target distinct brain regions and cell types
  • 2020
  • In: Nature Neuroscience. - : NATURE PUBLISHING GROUP. - 1097-6256 .- 1546-1726. ; 23, s. 21-31
  • Journal article (peer-reviewed)abstract
    • The clinical and pathological differences between synucleinopathies such as Parkinson's disease and multiple system atrophy have been postulated to stem from unique strains of alpha-synuclein aggregates, akin to what occurs in prion diseases. Here we demonstrate that inoculation of transgenic mice with different strains of recombinant or brain-derived alpha-synuclein aggregates produces clinically and pathologically distinct diseases. Strain-specific differences were observed in the signs of neurological illness, time to disease onset, morphology of cerebral alpha-synuclein deposits and the conformational properties of the induced aggregates. Moreover, different strains targeted distinct cellular populations and cell types within the brain, recapitulating the selective targeting observed among human synucleinopathies. Strain-specific clinical, pathological and biochemical differences were faithfully maintained after serial passaging, which implies that alpha-synuclein propagates via prion-like conformational templating. Thus, pathogenic alpha-synuclein exhibits key hallmarks of prion strains, which provides evidence that disease heterogeneity among the synucleinopathies is caused by distinct alpha-synuclein strains.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view