SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Willenbrock M.) "

Sökning: WFRF:(Willenbrock M.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdesselam, A., et al. (författare)
  • The ATLAS semiconductor tracker end-cap module
  • 2007
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 575:3, s. 353-389
  • Tidskriftsartikel (refereegranskat)abstract
    • The challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required read-out speed and the expected radiation levels. The ATLAS Semiconductor Tracker. (SCT) end-caps have a total of about 3 million electronics channels each reading out every 25 ns into its own on-chip 3.3 mu s buffer. The highest anticipated dose after 10 years operation is 1.4x10(14) cm(-2) in units of 1 MeV neutron equivalent (assuming the damage factors scale with the non-ionising energy loss). The forward tracker has 1976 double-sided modules, mostly of area similar to 70 cm(2), each having 2 x 768 strips read out by six ASICs per side. The requirement to achieve an average perpendicular radiation length of 1.5% X-0, while coping with up to 7 W dissipation per module (after irradiation), leads to stringent constraints on the thermal design. The additional requirement of 1500e(-) equivalent noise charge (ENC) rising to only 1800e(-) ENC after irradiation, provides stringent design constraints on both the high-density Cu/Polyimide flex read-out circuit and the ABCD3TA read-out ASICs. Finally, the accuracy of module assembly must not compromise the 16 mu m (r phi) resolution perpendicular to the strip directions or 580 mu m radial resolution coming from the 40 mrad front-back stereo angle. A total of 2210 modules were built to the tight tolerances and specifications required for the SCT. This was 234 more than the 1976 required and represents a yield of 93%. The component flow was at times tight, but the module production rate of 40-50 per week was maintained despite this. The distributed production was not found to be a major logistical problem and it allowed additional flexibility to take advantage of where the effort was available, including any spare capacity, for building the end-cap modules. The collaboration that produced the ATLAS SCT end-cap modules kept in close contact at all times so that the effects of shortages or stoppages at different sites could be rapidly resolved.
  •  
2.
  • Eckerle, S., et al. (författare)
  • Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas : insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma
  • 2009
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 23:11, s. 2129-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Anaplastic large cell lymphoma (ALCL) is a main type of T-cell lymphomas and comprises three distinct entities: systemic anaplastic lymphoma kinase (ALK) positive, systemic ALK(-) and cutaneous ALK(-) ALCL (cALCL). Little is known about their pathogenesis and their cellular origin, and morphological and immunophenotypical overlap exists between ALK(-) ALCL and classical Hodgkin lymphoma (cHL). We conducted gene expression profiling of microdissected lymphoma cells of five ALK(+) and four ALK(-) systemic ALCL, seven cALCL and sixteen cHL, and of eight subsets of normal T and NK cells. The analysis supports a derivation of ALCL from activated T cells, but the lymphoma cells acquired a gene expression pattern hampering an assignment to a CD4(+), CD8(+) or CD30(+) T-cell origin. Indeed, ALCL display a down-modulation of many T-cell characteristic molecules. All ALCL types show significant expression of NFkappaB target genes and upregulation of genes involved in oncogenesis (e.g. EZH2). Surprisingly, few genes are differentially expressed between systemic and cALCL despite their different clinical behaviour, and between ALK(-) ALCL and cHL despite their different cellular origin. ALK(+) ALCL are characterized by expression of genes regulated by pathways constitutively activated by ALK. This study provides multiple novel insights into the molecular biology and pathogenesis of ALCL.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Svensson, Lena M, et al. (författare)
  • The G alpha q/11 Proteins Contribute to T Lymphocyte Migration by Promoting Turnover of Integrin LFA-1 through Recycling
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of G alpha i proteins coupled to chemokine receptors in directed migration of immune cells is well understood. In this study we show that the separate class of G alpha q/11 proteins is required for the underlying ability of T cells to migrate both randomly and in a directed chemokine-dependent manner. Interfering with G alpha q or G alpha 11 using dominant negative cDNA constructs or siRNA for G alpha q causes accumulation of LFA-1 adhesions and stalled migration. G alpha q/11 has an impact on LFA-1 expression at plasma membrane level and also on its internalization. Additionally G alpha q co-localizes with LFA-1- and EEA1-expressing intracellular vesicles and partially with Rap1- but not Rab11-expressing vesicles. However the influence of G alpha q is not confined to the vesicles that express it, as its reduction alters intracellular trafficking of other vesicles involved in recycling. In summary vesicle-associated G alpha q/11 is required for the turnover of LFA-1 adhesion that is necessary for migration. These G proteins participate directly in the initial phase of recycling and this has an impact on later stages of the endo-exocytic pathway.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy