SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Willingham David) "

Sökning: WFRF:(Willingham David)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kurczy, Michael, 1980, et al. (författare)
  • Nanotome Cluster Bombardment to Recover Spatial Chemistry After Preparation of Biological Samples for SIMS Imaging
  • 2010
  • Ingår i: Journal of the American Society for Mass Spectrometry. - : American Chemical Society (ACS). - 1044-0305 .- 1879-1123. ; 21:5, s. 833-836
  • Tidskriftsartikel (refereegranskat)abstract
    • A C-60(+) cluster ion projectile is employed for sputter cleaning biological surfaces to reveal spatio-chemical information obscured by contamination overlayers. This protocol is used as a supplemental sample preparation method for time of flight secondary ion mass spectrometry (ToF-SIMS) imaging of frozen and freeze-dried biological materials. Following the removal of nanometers of material from the surface using sputter cleaning, a frozen-patterned cholesterol film and a freeze-dried tissue sample were analyzed using ToF-SIMS imaging. In both experiments, the chemical information was maintained after the sputter dose, due to the minimal chemical damage caused by C-60(+) bombardment. The damage to the surface produced by freeze-drying the tissue sample was found to have a greater effect on the loss of cholesterol signal than the sputter-induced damage. In addition to maintaining the chemical information, sputtering is not found to alter the spatial distribution of molecules on the surface. This approach removes artifacts that might obscure the surface chemistry of the sample and are common to many biological sample preparation schemes for ToF-SIMS imaging.
  •  
2.
  • Piehowski, Paul D., et al. (författare)
  • Freeze-Etching and Vapor Matrix Deposition for ToF-SIMS Imaging of Single Cells
  • 2008
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 24:15, s. 7906-7911
  • Tidskriftsartikel (refereegranskat)abstract
    • Freeze-etching, the practice of removing excess surface water from a sample through sublimation into the vacuum of the analysis environment, has been extensively used in conjunction with electron microscopy. Here, we apply this technique to time-of-flight secondary-ion mass spectrometry (ToF-SIMS) imaging of cryogenically preserved single cells. By removing the excess water which condenses onto the sample in vacuo, a uniform surface is produced that is ideal for imaging by static SIMS. We demonstrate that the conditions employed to remove deposited water do not adversely affect cell morphology and do not redistribute molecules in the topmost surface layers. In addition, we found water can be controllably redeposited onto the sample at temperatures below −100 °C in vacuum. The redeposited water increases the ionization of characteristic fragments of biologically interesting molecules 2-fold without loss of spatial resolution. The utilization of freeze-etch methodology will increase the reliability of cryogenic sample preparations for SIMS analysis by providing greater control of the surface environment. Using these procedures, we have obtained high quality spectra with both atomic bombardment as well as C60+ cluster ion bombardment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy