SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wilman S.) "

Sökning: WFRF:(Wilman S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barzakh, A., et al. (författare)
  • Large Shape Staggering in Neutron-Deficient Bi Isotopes
  • 2021
  • Ingår i: Physical Review Letters. - 0031-9007. ; 127:19
  • Tidskriftsartikel (refereegranskat)abstract
    • The changes in the mean-square charge radius (relative to Bi209), magnetic dipole, and electric quadrupole moments of Bi187,188,189,191 were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in Bi187,188,189g, manifested by a sharp radius increase for the ground state of Bi188 relative to the neighboring Bi187,189g. A large isomer shift was also observed for Bi188m. Both effects happen at the same neutron number, N=105, where the shape staggering and a similar isomer shift were observed in the mercury isotopes. Experimental results are reproduced by mean-field calculations where the ground or isomeric states were identified by the blocked quasiparticle configuration compatible with the observed spin, parity, and magnetic moment. © 2021 authors.
  •  
2.
  • Wilman, H. R., et al. (författare)
  • Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration
  • 2019
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 71:3, s. 594-602
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Excess liver iron content is common and is linked to the risk of hepatic and extrahepatic diseases. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases. Methods: First, we performed a genome-wide association study (GWAS) in 8,289 individuals from UK Biobank, whose liver iron level had been quantified by magnetic resonance imaging, before validating our findings in an independent cohort (n = 1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 25 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 traits and disease outcomes. Results: We identified 3 independent genetic variants (rs1800562 [C282Y] and rs1799945 [H63D] in HFE and rs855791 [V736A] in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (p <5 × 10−8). The 2 HFE variants account for ∼85% of all cases of hereditary haemochromatosis. Mendelian randomisation analysis provided evidence that higher central obesity plays a causal role in increased liver iron content. Phenome-wide association analysis demonstrated shared aetiopathogenic mechanisms for elevated liver iron, high blood pressure, cirrhosis, malignancies, neuropsychiatric and rheumatological conditions, while also highlighting inverse associations with anaemias, lipidaemias and ischaemic heart disease. Conclusion: Our study provides genetic evidence that mechanisms underlying higher liver iron content are likely systemic rather than organ specific, that higher central obesity is causally associated with higher liver iron, and that liver iron shares common aetiology with multiple metabolic and non-metabolic diseases. Lay summary: Excess liver iron content is common and is associated with liver diseases and metabolic diseases including diabetes, high blood pressure, and heart disease. We identified 3 genetic variants that are linked to an increased risk of developing higher liver iron content. We show that the same genetic variants are linked to higher risk of many diseases, but they may also be associated with some health advantages. Finally, we use genetic variants associated with waist-to-hip ratio as a tool to show that central obesity is causally associated with increased liver iron content.
  •  
3.
  • Parisinos, Constantinos A., et al. (författare)
  • Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis
  • 2020
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 73:2, s. 241-251
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundA non-invasive method to grade the severity of steatohepatitis and liver fibrosis is magnetic resonance imaging (MRI) based corrected T1 (cT1). We aimed to identify genetic variants influencing liver cT1 and use genetics to understand mechanisms underlying liver fibroinflammatory disease and its link with other metabolic traits and diseases.MethodsFirst, we performed a genome-wide association study (GWAS) in 14,440 Europeans in UK Biobank with liver cT1 measures. Second, we explored the effects of the cT1 variants on liver blood tests, and a range of metabolic traits and diseases. Third, we used Mendelian randomisation to test the causal effects of 24 predominantly metabolic traits on liver cT1 measures.ResultsWe identified six independent genetic variants associated with liver cT1 that reached GWAS significance threshold (p<5x10-8). Four of the variants (rs75935921 in SLC30A10, rs13107325 in SLC39A8, rs58542926 in TM6SF2, rs738409 in PNPLA3) were also associated with elevated transaminases and had variable effects on liver fat and other metabolic traits. Insulin resistance, type 2 diabetes, non-alcoholic fatty liver and BMI were causally associated with elevated cT1 whilst favourable adiposity (instrumented by variants associated with higher adiposity but lower risk of cardiometabolic disease and lower liver fat) was found to be protective.ConclusionThe association between two metal ion transporters and cT1 indicates an important new mechanism in steatohepatitis. Future studies are needed to determine whether interventions targeting the identified transporters might prevent liver disease in at risk individuals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy