SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Windahl S) "

Search: WFRF:(Windahl S)

  • Result 1-10 of 31
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Desai, S., et al. (author)
  • A COX-2 Inhibitor Does Not Interfere With the Bone-Protective Effects of Loading in Male Mice With Arthritis
  • 2023
  • In: Jbmr Plus. - 2473-4039. ; 7:7
  • Journal article (peer-reviewed)abstract
    • Mechanical loading enhances bone strength and counteracts arthritis-induced inflammation-mediated bone loss in female mice. It is unknown whether nonsteroidal anti-inflammatory drugs (NSAIDs; eg, COX-2 inhibitors) can reduce inflammation without affecting the loading-associated bone formation in male mice. The aim of this study was to investigate if loading combined with a COX-2 inhibitor (NS-398) could prevent arthritis-induced bone loss and inflammation in male mice. Four-month-old male C57BL/6J mice were subjected to axial tibial mechanical loading three times/week for 2 weeks. Local mono-arthritis was induced with a systemic injection of methylated bovine serum albumin on the first day of loading, followed by a local injection in one knee 1 week later. The arthritis induction, knee swelling, bone architecture, and osteoclast number were evaluated in the hind limbs. C-terminal cross-links as a marker for osteoclast activity was measured in serum. Compared with loading and arthritis alone, loading of the arthritic joint enhanced swelling that was partly counteracted by NS-398. Loading of the arthritic joint enhanced synovitis and articular cartilage damage compared with loading alone. Loading increased cortical bone and counteracted the arthritis-induced decrease in epiphyseal bone. NS-398 did not alter the bone-protective effects of loading. C-terminal cross-links, a bone resorption marker, was increased by arthritis but not loading. In conclusion, loading prevented arthritis-induced epiphyseal and metaphyseal bone loss, and NS-398 reduced knee swelling without affecting the bone-protective effects of loading. If our results can be extrapolated to the human situation, specific COX-2 inhibitors could be used in combination with loading exercise to prevent pain and swelling of the joint without influencing the bone-protective effects of loading. (c) 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
  •  
5.
  • Farman, H. H., et al. (author)
  • Female mice lacking estrogen receptor-α in hypothalamic proopiomelanocortin (POMC) neurons display enhanced estrogenic response on cortical bone mass
  • 2016
  • In: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 157:8, s. 3242-3252
  • Journal article (peer-reviewed)abstract
    • Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor(ER)α.CentralERα exertsaninhibitoryroleonbonemass.ERα ishighlyexpressedinthearcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα -/- ). Female POMC-ERα -/- and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα -/- mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERaα-mediated effects in bone determines cortical bone mass in female mice.
  •  
6.
  •  
7.
  • Amzaleg, Y., et al. (author)
  • Estrogens and selective estrogen receptor modulators differentially antagonize Runx2 in ST2 mesenchymal progenitor cells
  • 2018
  • In: Journal of Steroid Biochemistry and Molecular Biology. - : Elsevier BV. - 0960-0760 .- 1879-1220. ; 183, s. 10-17
  • Journal article (peer-reviewed)abstract
    • Estrogens attenuate bone turnover by inhibiting both osteoclasts and osteoblasts, in part through antagonizing Runx2. Apparently conflicting, stimulatory effects in osteoblast lineage cells, however, sway the balance between bone resorption and bone formation in favor of the latter. Consistent with this dualism, 17 beta-estradiol (E2) both stimulates and inhibits Runx2 in a locus-specific manner, and here we provide evidence for such locus specific regulation of Runx2 by E2 in vivo. We also demonstrate dual, negative and positive, regulation of Runx2-driven alkaline phosphatase (ALP) activity by increasing E2 concentrations in ST2 osteoblast progenitor cells. We further compared the effects of E2 to those of the Selective Estrogen Receptor Modulators (SERMs) raloxifene (ral) and lasofoxifene (las) and the phytoestrogen puerarin. We found that E2 at the physiological concentrations of 0.1-1 nM, as well as ral and las, but not puerarin, antagonize Runx2-driven ALP activity. At >= 10 nM, E2 and puerarin, but not ral or las, stimulate ALP relative to the activity measured at 0.1-1 nM. Contrasting the difference between E2 and SERMs in ST2 cells, they all shared a similar dose-response profile when inhibiting preosteoclast proliferation. That ral and las poorly mimic the locus-and concentration-dependent effects of E2 in mesenchymal progenitor cells may help explain their limited clinical efficacy.
  •  
8.
  •  
9.
  •  
10.
  • Colldén, Hannah, et al. (author)
  • Comprehensive Sex Steroid Profiling in Multiple Tissues Reveals Novel Insights in Sex Steroid Distribution in Male Mice
  • 2022
  • In: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 163:3
  • Journal article (peer-reviewed)abstract
    • A comprehensive atlas of sex steroid distribution in multiple tissues is currently lacking, and how circulating and tissue sex steroid levels correlate remains unknown. Here, we adapted and validated a gas chromatography tandem mass spectrometry method for simultaneous measurement of testosterone (T), dihydrotestosterone (DHT), androstenedione, progesterone (Prog), estradiol, and estrone in mouse tissues. We then mapped the sex steroid pattern in 10 different endocrine, reproductive, and major body compartment tissues and serum of gonadal intact and orchiectomized (ORX) male mice. In gonadal intact males, high levels of DHT were observed in reproductive tissues, but also in white adipose tissue (WAT). A major part of the total body reservoir of androgens (T and DHT) and Prog was found in WAT. Serum levels of androgens and Prog were strongly correlated with corresponding levels in the brain while only modestly correlated with corresponding levels in WAT. After orchiectomy, the levels of the active androgens T and DHT decreased markedly while Prog levels in male reproductive tissues increased slightly. In ORX mice, Prog was by far the most abundant sex steroid, and, again, WAT constituted the major reservoir of Prog in the body. In conclusion, we present a comprehensive atlas of tissue and serum concentrations of sex hormones in male mice, revealing novel insights in sex steroid distribution. Brain sex steroid levels are well reflected by serum levels and WAT constitutes a large reservoir of sex steroids in male mice. In addition, Prog is the most abundant sex hormone in ORX mice.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view