SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Winkel Missel Julie) "

Sökning: WFRF:(Winkel Missel Julie)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bjørkskov, Frederik Bühring, et al. (författare)
  • Purification and functional comparison of nine human Aquaporins produced in Saccharomyces cerevisiae for the purpose of biophysical characterization
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The sparse number of high-resolution human membrane protein structures severely restricts our comprehension of molecular physiology and ability to exploit rational drug design. In the search for a standardized, cheap and easily handled human membrane protein production platform, we thoroughly investigated the capacity of S. cerevisiae to deliver high yields of prime quality human AQPs, focusing on poorly characterized members including some previously shown to be difficult to isolate. Exploiting GFP labeled forms we comprehensively optimized production and purification procedures resulting in satisfactory yields of all nine AQP targets. We applied the obtained knowledge to successfully upscale purification of histidine tagged human AQP10 produced in large bioreactors. Glycosylation analysis revealed that AQP7 and 12 were O-glycosylated, AQP10 was N-glycosylated while the other AQPs were not glycosylated. We furthermore performed functional characterization and found that AQP 2, 6 and 8 allowed flux of water whereas AQP3, 7, 9, 10, 11 and 12 also facilitated a glycerol flux. In conclusion, our S. cerevisiae platform emerges as a powerful tool for isolation of functional, difficult-To-express human membrane proteins suitable for biophysical characterization.
  •  
2.
  • Al-Jubair, Tamim, et al. (författare)
  • Characterization of human aquaporin protein-protein interactions using microscale thermophoresis (MST)
  • 2022
  • Ingår i: STAR Protocols. - : Elsevier BV. - 2666-1667. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporin water channels (AQPs) are membrane proteins that maintain cellular water homeostasis. The interactions between human AQPs and other proteins play crucial roles in AQP regulation by both gating and trafficking. Here, we describe a protocol for characterizing the interaction between a human AQP and a soluble interaction partner using microscale thermophoresis (MST). MST has the advantage of low sample consumption and high detergent compatibility enabling AQP protein-protein interaction investigation with a high level of control of components and environment. For complete details on the use and execution of this protocol, please refer to Kitchen et al. (2020) and Roche et al. (2017).
  •  
3.
  • Al-Jubair, Tamim, et al. (författare)
  • High-yield overproduction and purification of human aquaporins from Pichia pastoris
  • 2022
  • Ingår i: STAR Protocols. - : Elsevier BV. - 2666-1667. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporins (AQPs) are membrane-bound water channels that play crucial roles in maintaining the water homeostasis of the human body. Here, we present a protocol for high-yield recombinant expression of human AQPs in the methylotropic yeast Pichia pastoris and subsequent AQP purification. The protocol typically yields 1–5 mg AQP per g of yeast cell at >95% purity and is compatible with any membrane protein cloned into Pichia pastoris, although expression levels may vary. For complete details on the use and execution of this protocol, please refer to Kitchen et al. (2020) and Frick et al. (2014).
  •  
4.
  • Gotfryd, Kamil, et al. (författare)
  • Human adipose glycerol flux is regulated by a pH gate in AQP10
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is a major threat to global health and metabolically associated with glycerol homeostasis. Here we demonstrate that in human adipocytes, the decreased pH observed during lipolysis (fat burning) correlates with increased glycerol release and stimulation of aquaglyceroporin AQP10. The crystal structure of human AQP10 determined at 2.3 Å resolution unveils the molecular basis for pH modulation-an exceptionally wide selectivity (ar/R) filter and a unique cytoplasmic gate. Structural and functional (in vitro and in vivo) analyses disclose a glycerol-specific pH-dependence and pinpoint pore-lining His80 as the pH-sensor. Molecular dynamics simulations indicate how gate opening is achieved. These findings unravel a unique type of aquaporin regulation important for controlling body fat mass. Thus, targeting the cytoplasmic gate to induce constitutive glycerol secretion may offer an attractive option for treating obesity and related complications.
  •  
5.
  • Kitchen, Philip, et al. (författare)
  • Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema
  • 2020
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674. ; 181:4, s. 19-799
  • Tidskriftsartikel (refereegranskat)abstract
    • Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.
  •  
6.
  • Kreida, Stefan, et al. (författare)
  • The role of phosphorylation in calmodulin-mediated gating of human AQP0
  • 2024
  • Ingår i: The Biochemical journal. - 0264-6021. ; 481:1, s. 17-32
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporin-0 (AQP0) is the main water channel in the mammalian lens and is involved in accommodation and maintaining lens transparency. AQP0 binds the Ca2+-sensing protein calmodulin (CaM) and this interaction is believed to gate its water permeability by closing the water-conducting pore. Here, we express recombinant and functional human AQP0 in Pichia pastoris and investigate how phosphorylation affects the interaction with CaM in vitro as well as the CaM-dependent water permeability of AQP0 in proteoliposomes. Using microscale thermophoresis and surface plasmon resonance technology we show that the introduction of the single phospho-mimicking mutations S229D and S235D in AQP0 reduces CaM binding. In contrast, CaM interacts with S231D with similar affinity as wild type, but in a different manner. Permeability studies of wild-type AQP0 showed that the water conductance was significantly reduced by CaM in a Ca2+-dependent manner, whereas AQP0 S229D, S231D and S235D were all locked in an open state, insensitive to CaM. We propose a model in which phosphorylation of AQP0 control CaM-mediated gating in two different ways (1) phosphorylation of S229 or S235 abolishes binding (the pore remains open) and (2) phosphorylation of S231 results in CaM binding without causing pore closure, the functional role of which remains to be elucidated. Our results suggest that site-dependent phosphorylation of AQP0 dynamically controls its CaM-mediated gating. Since the level of phosphorylation increases towards the lens inner cortex, AQP0 may become insensitive to CaM-dependent gating along this axis.
  •  
7.
  • Li, Ping, et al. (författare)
  • PcoB is a defense outer membrane protein that facilitates cellular uptake of copper
  • 2022
  • Ingår i: Protein Science. - : Wiley. - 0961-8368 .- 1469-896X. ; 31:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper (Cu) is one of the most abundant trace metals in all organisms, involved in a plethora of cellular processes. Yet elevated concentrations of the element are harmful, and interestingly prokaryotes are more sensitive for environmental Cu stress than humans. Various transport systems are present to maintain intracellular Cu homeostasis, including the prokaryotic plasmid-encoded multiprotein pco operon, which is generally assigned as a defense mechanism against elevated Cu concentrations. Here we structurally and functionally characterize the outer membrane component of the Pco system, PcoB, recovering a 2.0 Å structure, revealing a classical β-barrel architecture. Unexpectedly, we identify a large opening on the extracellular side, linked to a considerably electronegative funnel that becomes narrower towards the periplasm, defining an ion-conducting pathway as also supported by metal binding quantification via inductively coupled plasma mass spectrometry and molecular dynamics (MD) simulations. However, the structure is partially obstructed towards the periplasmic side, and yet flux is permitted in the presence of a Cu gradient as shown by functional characterization in vitro. Complementary in vivo experiments demonstrate that isolated PcoB confers increased sensitivity towards Cu. Aggregated, our findings indicate that PcoB serves to permit Cu import. Thus, it is possible the Pco system physiologically accumulates Cu in the periplasm as a part of an unorthodox defense mechanism against metal stress. These results point to a previously unrecognized principle of maintaining Cu homeostasis and may as such also assist in the understanding and in efforts towards combatting bacterial infections of Pco-harboring pathogens.
  •  
8.
  • Missel, Julie Winkel, et al. (författare)
  • Cyclohexyl-α maltoside as a highly efficient tool for membrane protein studies
  • 2021
  • Ingår i: Current Research in Structural Biology. - : Elsevier BV. - 2665-928X. ; 3, s. 85-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane proteins (MPs) constitute a large fraction of the proteome, but exhibit physicochemical characteristics that impose challenges for successful sample production crucial for subsequent biophysical studies. In particular, MPs have to be extracted from the membranes in a stable form. Reconstitution into detergent micelles represents the most common procedure in recovering MPs for subsequent analysis. n-dodecyl-β-D-maltoside (DDM) remains one of the most popular conventional detergents used in production of MPs. Here we characterize the novel DDM analogue 4-trans-(4-trans-propylcyclohexyl)-cyclohexyl α-maltoside (t-PCCαM), possessing a substantially lower critical micelle concentration (CMC) than the parental compound that represents an attractive feature when handling MPs. Using three different types of MPs of human and prokaryotic origin, i.e., a channel, a primary and a secondary active transporter, expressed in yeast and bacterial host systems, respectively, we investigate the performance of t-PCCαM in solubilization and affinity purification together with its capacity to preserve native fold and activity. Strikingly, t-PCCαM displays favorable behavior in extracting and stabilizing the three selected targets. Importantly, t-PCCαM promoted extraction of properly folded protein, enhanced thermostability and provided negatively-stained electron microscopy samples of promising quality. All-in-all, t-PCCαM emerges as competitive surfactant applicable to a broad portfolio of challenging MPs for downstream structure-function analysis.
  •  
9.
  • Steffen, Jonas Hyld, et al. (författare)
  • Assessing water permeability of aquaporins in a proteoliposome-based stopped-flow setup
  • 2022
  • Ingår i: STAR Protocols. - : Elsevier BV. - 2666-1667. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporins (AQPs) are water channels embedded in the cell membrane that are critical in maintaining water homeostasis. We describe a protocol for determining the water permeation capacity of AQPs reconstituted into proteoliposomes. Using a stopped-flow setup, AQP embedded in proteoliposomes are exposed to an osmogenic gradient that triggers water flux. The consequent effects on proteoliposome size can be tracked using the fluorescence of an internalized fluorophore. This enables controlled characterization of water flux by AQPs. For complete details on the use and execution of this protocol, please refer to Kitchen et al. (2020).
  •  
10.
  • Truelsen, Sigurd Friis, et al. (författare)
  • The role of water coordination in the pH-dependent gating of hAQP10
  • 2022
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736. ; 1864:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Human aquaporin 10 (hAQP10) is an aquaglyceroporin that assists in maintaining glycerol flux in adipocytes during lipolysis at low pH. Hence, a molecular understanding of the pH-sensitive glycerol conductance may open up for drug development in obesity and metabolically related disorders. Control of hAQP10-mediated glycerol flux has been linked to the cytoplasmic end of the channel, where a unique loop is regulated by the protonation status of histidine 80 (H80). Here, we performed unbiased molecular dynamics simulations of three protonation states of H80 to unravel channel gating. Strikingly, at neutral pH, we identified a water coordination pattern with an inverted orientation of the water molecules in vicinity of the loop. Protonation of H80 results in a more hydrophobic loop conformation, causing loss of water coordination and leaving the pore often dehydrated. Our results indicate that the loss of such water interaction network may be integral for the destabilization of the loop in the closed configuration at low pH. Additionally, a residue unique to hAQP10 (F85) reveals structural importance by flipping into the channel in correlation with loop movements, indicating a loop-stabilizing role in the closed configuration. Taken together, our simulations suggest a unique gating mechanism combining complex interaction networks between water molecules and protein residues at the loop interface. Considering the role of hAQP10 in adipocytes, the detailed molecular insights of pH-regulation presented here will help to understand glycerol pathways in these cells and may assist in drug discovery for better management of human adiposity and obesity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy