SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wirtz H) "

Sökning: WFRF:(Wirtz H)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Legall, H., et al. (författare)
  • Compact X-ray microscope for the water window based on a high brightness laser plasma source
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:16, s. 18362-18369
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a laser plasma based x-ray microscope for the water window employing a high-average power laser system for plasma generation. At 90 W laser power a brightness of 7.4 x 10(11) photons/(s x sr x mu m(2)) was measured for the nitrogen Ly alpha line emission at 2.478 nm. Using a multilayer condenser mirror with 0.3 % reflectivity 10(6) photons/(mu m(2) x s) were obtained in the object plane. Microscopy performed at a laser power of 60 W resolves 40 nm lines with an exposure time of 60 s. The exposure time can be further reduced to 20 s by the use of new multilayer condenser optics and operating the laser at its full power of 130 W.
  •  
3.
  •  
4.
  • Weis, J., et al. (författare)
  • Sensitivity to change of the EORTC quality of life module measuring cancer-related fatigue (EORTC QlQ-Fa12): Results from the international psychometric validation
  • 2019
  • Ingår i: Psycho-Oncology. - : Wiley. - 1057-9249 .- 1099-1611. ; 28, s. 1753-1761
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective The European Organisation for Research and Treatment of Cancer Quality of Life Group (EORTC QLG) has developed a multidimensional instrument measuring cancer-related fatigue, the EORTC QLQ-FA12. The analysis of sensitivity to change is an essential part of psychometric validation. With this study, we investigated the EORTC QLQ-FA12's sensitivity to change. Methods The methodology follows the EORTC guidelines of EORTC QLG for phase IV validation of modules. We included cancer patients undergoing curative and palliative treatment at t1 and followed them up prospectively over the course of their treatment (t2) and 4 weeks after completion of treatment (t3). Data were collected prospectively at 17 sites in 11 countries. Sensitivity to change was investigated using analysis of variance. Results A total sample of 533 patients was enrolled with various tumour types, different stages of cancer, and receiving either curative treatment (n=311) or palliative treatment (n=222). Over time all fatigue scores were significantly higher in the palliative treatment group compared with the curative group (p < .001). Physical fatigue increased with medium effect size over the course of treatment in the curative group (standardized response mean [SRM] (t1,t2) = 0.44]. After treatment physical [SRM (t2,t3) = 0.39], emotional [SRM (t2,t3)= 0.28] and cognitive fatigue (SRM [t2,t3] = 0.22) declined significantly in the curative group. In the palliative group, emotional (SRM [t2,t3] = 0.18) as well as cognitive [SRM [t2,t3] = 0.26) fatigue increases significantly. Conclusions The EORTC-QLQ-FA12 proved to identify clinically significant changes in fatigue in the course of curative and palliative cancer treatment.
  •  
5.
  • Fellinger, Joris, et al. (författare)
  • Tungsten based divertor development for Wendelstein 7-X
  • 2023
  • Ingår i: Nuclear Materials and Energy. - 2352-1791. ; 37
  • Tidskriftsartikel (refereegranskat)abstract
    • Wendelstein 7-X, the world’s largest superconducting stellarator in Greifswald (Germany), started plasma experiments with a water-cooled plasma-facing wall in 2022, allowing for long pulse operation. In parallel, a project was launched in 2021 to develop a W based divertor, replacing the current CFC divertor, to demonstrate plasma performance of a stellarator with a reactor relevant plasma facing materials with low tritium retention. The project consists of two tasks: Based on experience from the previous experimental campaigns and improved physics modelling, the geometry of the plasma-facing surface of the divertor and baffles is optimized to prevent overloads and to improve exhaust. In parallel, the manufacturing technology for a W based target module is qualified. This paper gives a status update of project. It focusses on the conceptual design of a W based target module, the manufacturing technology and its qualification, which is conducted in the framework of the EUROfusion funded WPDIV program. A flat tile design in which a target module is made of a single target element is pursued. The technology must allow for moderate curvatures of the plasma-facing surface to follow the magnetic field lines. The target element is designed for steady state heat loads of 10 MW/m2 (as for the CFC divertor). Target modules of a similar size and weight as for the CFC divertor are assumed (approx. < 0.25 m2 and < 60 kg) using the existing water cooling infrastructure providing 5 l/s and roughly maximum 15 bar pressure drop per module. The main technology under qualification is based on a CuCrZr heat sink made either by additive manufacturing using laser powder bed fusion (LPBF) or by uniaxial diffusion welding of pre-machined forged CuCrZr plates. After heat treatment, the plasma-facing side of the heat sink is covered by W or if feasible by the more ductile WNiFe, preferably by coating or alternatively by hot isostatic pressing W based tiles with a soft OFE-Cu interlayer. Last step is a final machining of the plasma-exposed surface and the interfaces to the water supply lines and supports to correct manufacturing deformations.
  •  
6.
  •  
7.
  • Legall, H., et al. (författare)
  • A compact laboratory transmission X-ray microscope for the water window
  • 2013
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 463:1, s. 012013-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the water window (2.2-4.4 nm) the attenuation of radiation in water is significantly smaller than in organic material. Therefore, intact biological specimen (e.g. cells) can be investigated in their natural environment. In order to make this technique accessible to users in a laboratory environment a Full-Field Laboratory Transmission X-ray Microscope (L-TXM) has been developed. The L-TXM is operated with a nitrogen laser plasma source employing an InnoSlab high power laser system for plasma generation. For microscopy the Ly α emission of highly ionized nitrogen at 2.48 nm is used. A laser plasma brightness of 5 × 1011 photons/(s × sr × μm2 in line at 2.48 nm) at a laser power of 70 W is demonstrated. In combination with a state-of-the-art Cr/V multilayer condenser mirror the sample is illuminated with 106 photons/(μm2 × s). Using objective zone plates 35-40 nm lines can be resolved with exposure times < 60 s. The exposure time can be further reduced to 20 s by the use of new multilayer condenser optics and operating the laser at its full power of 130 W. These exposure times enable cryo tomography in a laboratory environment.
  •  
8.
  • Schneider, K. M., et al. (författare)
  • Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and therapeutic options for advanced HCC are limited. Here, we observe that intestinal dysbiosis affects antitumor immune surveillance and drives liver disease progression towards cancer. Dysbiotic microbiota, as seen in Nlrp6(-/-) mice, induces a Toll-like receptor 4 dependent expansion of hepatic monocytic myeloid-derived suppressor cells (mMDSC) and suppression of T-cell abundance. This phenotype is transmissible via fecal microbiota transfer and reversible upon antibiotic treatment, pointing to the high plasticity of the tumor microenvironment. While loss of Akkermansia muciniphila correlates with mMDSC abundance, its reintroduction restores intestinal barrier function and strongly reduces liver inflammation and fibrosis. Cirrhosis patients display increased bacterial abundance in hepatic tissue, which induces pronounced transcriptional changes, including activation of fibro-inflammatory pathways as well as circuits mediating cancer immunosuppression. This study demonstrates that gut microbiota closely shapes the hepatic inflammatory microenvironment opening approaches for cancer prevention and therapy. Steatohepatitis is a chronic hepatic inflammation associated with increased risk of hepatocellular carcinoma progression. Here the authors show that intestinal dysbiosis in mice lacking the inflammasome sensor molecule NLRP6 aggravates steatohepatitis and accelerates liver cancer progression, a process that can be delayed by antibiotic treatment.
  •  
9.
  • Corre, Y., et al. (författare)
  • Testing of ITER-grade plasma facing units in the WEST tokamak: Progress in understanding heat loading and damage mechanisms
  • 2023
  • Ingår i: Nuclear Materials and Energy. - : Elsevier BV. - 2352-1791. ; 37
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessing the performance of the ITER design for the tungsten (W) divertor Plasma Facing Units (PFUs) in a tokamak environment is a high priority issue to ensure efficient plasma operation. This paper reviews the most recent results derived from experiments and post-mortem analysis of the ITER-grade PFUs exposed in the WEST tokamak and the associated modelling, with a focus on understanding heat loading and damage evolution. Several shaping options, sharp or chamfered leading edge (LE), unshaped or shaped blocks with a toroidal bevel as foreseen in ITER, were investigated, under steady state heat fluxes of up to 120 MW⋅m−2 and 6 MW⋅m−2 on the sharp LE and top surface of the block, respectively. A very high spatial resolution (VHR) infrared (IR) camera (0.1 mm/pixel) was used to derive the temporal and surface distribution of the temperature and heat load on the castellated tungsten blocks for different geometric alignment and plasma conditions. Photonic modelling was required to reproduce the IR measurements in particular in the toroidal and poloidal gaps of the mono-block (MB) stacks where high apparent temperatures are observed. Specular reflection is found to be the dominant emitter in these parts of the blocks. W-cracking was observed on the leading edge of the blocks already within the first phase of plasma operation, during which the divertor was equipped with unshaped PFUs, including some intentionally misaligned blocks. Numerical analysis taking into account softening processes and mechanical stresses, revealed brittle failure due to transients as the dominant failure mechanisms. Ductile failure was observed in one particular block used for the melting experiment, therefore under extremely high steady state heat load conditions. W-melting achieved on actively cooled PFU exhibits specific features: shallow melting and slow melt displacement. Plasma exposure of pre-damaged PFUs at various damage levels (crack network and melted droplets) was carried out under high heat load conditions with several hours of cumulated plasma duration. IR data and preliminary surface analyses show no evidence of significant degradation damage progression under these conditions.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy