SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Witman N) "

Sökning: WFRF:(Witman N)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Eroglu, E, et al. (författare)
  • Epicardium-derived cells organize through tight junctions to replenish cardiac muscle in salamanders
  • 2022
  • Ingår i: Nature cell biology. - : Springer Science and Business Media LLC. - 1476-4679 .- 1465-7392. ; 24:5, s. 645-
  • Tidskriftsartikel (refereegranskat)abstract
    • The contribution of the epicardium, the outermost layer of the heart, to cardiac regeneration has remained controversial due to a lack of suitable analytical tools. By combining genetic marker-independent lineage-tracing strategies with transcriptional profiling and loss-of-function methods, we report here that the epicardium of the highly regenerative salamander species Pleurodeles waltl has an intrinsic capacity to differentiate into cardiomyocytes. Following cryoinjury, CLDN6+ epicardium-derived cells appear at the lesion site, organize into honeycomb-like structures connected via focal tight junctions and undergo transcriptional reprogramming that results in concomitant differentiation into de novo cardiomyocytes. Ablation of CLDN6+ differentiation intermediates as well as disruption of their tight junctions impairs cardiac regeneration. Salamanders constitute the evolutionarily closest species to mammals with an extensive ability to regenerate heart muscle and our results highlight the epicardium and tight junctions as key targets in efforts to promote cardiac regeneration.
  •  
5.
  • Gao, MC, et al. (författare)
  • Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair
  • 2017
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1, s. 5246-
  • Tidskriftsartikel (refereegranskat)abstract
    • Long segmental repair of trachea stenosis is an intractable condition in the clinic. The reconstruction of an artificial substitute by tissue engineering is a promising approach to solve this unmet clinical need. 3D printing technology provides an infinite possibility for engineering a trachea. Here, we 3D printed a biodegradable reticular polycaprolactone (PCL) scaffold with similar morphology to the whole segment of rabbits’ native trachea. The 3D-printed scaffold was suspended in culture with chondrocytes for 2 (Group I) or 4 (Group II) weeks, respectively. This in vitro suspension produced a more successful reconstruction of a tissue-engineered trachea (TET), which enhanced the overall support function of the replaced tracheal segment. After implantation of the chondrocyte-treated scaffold into the subcutaneous tissue of nude mice, the TET presented properties of mature cartilage tissue. To further evaluate the feasibility of repairing whole segment tracheal defects, replacement surgery of rabbits’ native trachea by TET was performed. Following postoperative care, mean survival time in Group I was 14.38 ± 5.42 days, and in Group II was 22.58 ± 16.10 days, with the longest survival time being 10 weeks in Group II. In conclusion, we demonstrate the feasibility of repairing whole segment tracheal defects with 3D printed TET.
  •  
6.
  • Geng, YN, et al. (författare)
  • BMP-2 and VEGF-A modRNAs in collagen scaffold synergistically drive bone repair through osteogenic and angiogenic pathways
  • 2021
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4:1, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone has a remarkable potential for self-healing and repair, yet several injury types are non-healing even after surgical or non-surgical treatment. Regenerative therapies that induce bone repair or improve the rate of recovery are being intensely investigated. Here, we probed the potential of bone marrow stem cells (BMSCs) engineered with chemically modified mRNAs (modRNA) encoding the hBMP-2 and VEGF-A gene to therapeutically heal bone. Induction of osteogenesis from modRNA-treated BMSCs was confirmed by expression profiles of osteogenic related markers and the presence of mineralization deposits. To test for therapeutic efficacy, a collagen scaffold inoculated with modRNA-treated BMSCs was explored in an in vivo skull defect model. We show that hBMP-2 and VEGF-A modRNAs synergistically drive osteogenic and angiogenic programs resulting in superior healing properties. This study exploits chemically modified mRNAs, together with biomaterials, as a potential approach for the clinical treatment of bone injury and defects.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy