SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Witman Nevin) "

Sökning: WFRF:(Witman Nevin)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Saadi, Jonathan, et al. (författare)
  • Endovascular transplantation of mRNA-enhanced mesenchymal stromal cells results in superior therapeutic protein expression in swine heart
  • 2024
  • Ingår i: Molecular therapy. Methods & clinical development. - : Elsevier BV. - 2399-6951 .- 2329-0501. ; 32:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart failure has a poor prognosis and no curative treatment exists. Clinical trials are investigating gene- and cell-based therapies to improve cardiac function. The safe and efficient delivery of these therapies to solid organs is challenging. Herein, we demonstrate the feasibility of using an endovascular intramyocardial delivery approach to safely administer mRNA drug products and perform cell transplantation procedures in swine. Using a trans-vessel wall (TW) device, we delivered chemically modified mRNAs (modRNA) and mRNA-enhanced mesenchymal stromal cells expressing vascular endothelial growth factor A (VEGF-A) directly to the heart. We monitored and mapped the cellular distribution, protein expression, and safety tolerability of such an approach. The delivery of modRNA-enhanced cells via the TW device with different flow rates and cell concentrations marginally affect cell viability and protein expression in situ. Implanted cells were found within the myocardium for at least 3 days following administration, without the use of immunomodulation and minimal impact on tissue integrity. Finally, we could increase the protein expression of VEGF-A over 500-fold in the heart using a cell-mediated modRNA delivery system compared with modRNA delivered in saline solution. Ultimately, this method paves the way for future research to pioneer new treatments for cardiac disease.
  •  
2.
  • De Genst, Erwin, et al. (författare)
  • Blocking phospholamban with VHH intrabodies enhances contractility and relaxation in heart failure
  • 2022
  • Ingår i: Nature Communications. - Stockholm : Karolinska Institutet, Dept of Cell and Molecular Biology. - 2041-1723.
  • Tidskriftsartikel (refereegranskat)abstract
    • The dysregulated physical interaction between two intracellular membrane proteins, the sarco/endoplasmic reticulum Ca2+ ATPase and its reversible inhibitor phospholamban, induces heart failure by inhibiting calcium cycling. While phospholamban is a bona-fide therapeutic target, approaches to selectively inhibit this protein remain elusive. Here, we report the in vivo application of intracellular acting antibodies (intrabodies), derived from the variable domain of camelid heavy-chain antibodies, to modulate the function of phospholamban. Using a synthetic VHH phage-display library, we identify intrabodies with high affinity and specificity for different conformational states of phospholamban. Rapid phenotypic screening, via modified mRNA transfection of primary cells and tissue, efficiently identifies the intrabody with most desirable features. Adeno-associated virus mediated delivery of this intrabody results in improvement of cardiac performance in a murine heart failure model. Our strategy for generating intrabodies to investigate cardiac disease combined with modified mRNA and adeno-associated virus screening could reveal unique future therapeutic opportunities.
  •  
3.
  • Rohner, Eduarde, et al. (författare)
  • An mRNA assay system demonstrates proteasomal-specific degradation contributes to cardiomyopathic phospholamban null mutation
  • 2021
  • Ingår i: Molecular Medicine. - Stockholm : Karolinska Institutet, Dept of Cell and Molecular Biology. - 1528-3658 .- 1076-1551.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The human L39X phospholamban (PLN) cardiomyopathic mutant has previously been reported as a null mutation but the detailed molecular pathways that lead to the complete lack of detectable protein remain to be clarified. Previous studies have shown the implication between an impaired cellular degradation homeostasis and cardiomyopathy development. Therefore, uncovering the underlying mechanism responsible for the lack of PLN protein has important implications in understanding the patient pathology, chronic human calcium dysregulation and aid the development of potential therapeutics. Methods: A panel of mutant and wild-type reporter tagged PLN modified mRNA (modRNA) constructs were transfected in human embryonic stem cell-derived cardiomyocytes. Lysosomal and proteasomal chemical inhibitors were used together with cell imaging and protein analysis tools in order to dissect degradation pathways associated with expressed PLN constructs. Transcriptional profiling of the cardiomyocytes transfected by wild-type or L39X mutant PLN modRNA was analysed with bulk RNA sequencing. Results: Our modRNA assay system revealed that transfected L39X mRNA was stable and actively translated in vitro but with only trace amount of protein detectable. Proteasomal inhibition of cardiomyocytes transfected with L39X mutant PLN modRNA showed a fourfold increase in protein expression levels. Additionally, RNA sequencing analysis of protein degradational pathways showed a significant distinct transcriptomic signature between wild-type and L39X mutant PLN modRNA transfected cardiomyocytes. Conclusion: Our results demonstrate that the cardiomyopathic PLN null mutant L39X is rapidly, actively and specifically degraded by proteasomal pathways. Herein, and to the best of our knowledge, we report for the first time the usage of modified mRNAs to screen for and illuminate alternative molecular pathways found in genes associated with inherited cardiomyopathies.
  •  
4.
  • Sahara, Makoto, et al. (författare)
  • Population and single-cell analysis of human cardiogenesis reveals unique LGR5 ventricular progenitors in embryonic outflow tract
  • 2019
  • Ingår i: Developmental Cell. - Stockholm : Karolinska Institutet, Dept of Cell and Molecular Biology. - 1534-5807 .- 1878-1551.
  • Tidskriftsartikel (refereegranskat)abstract
    • The morphogenetic process of mammalian cardiac development is complex and highly regulated spatiotemporally by multipotent cardiac stem/progenitor cells (CPCs). Mouse studies have been informative for understanding mammalian cardiogenesis; however, similar insights have been poorly established in humans. Here, we report comprehensive gene expression profiles of human cardiac derivatives from multipotent CPCs to intermediates and mature cardiac cells by population and single-cell RNA-seq using human embryonic stem cell-derived and embryonic/fetal heart-derived cardiac cells micro-dissected from specific heart compartments. Importantly, we discover a uniquely human subset of cono-ventricular region-specific CPCs, marked by LGR5. At 4 to 5 weeks of fetal age, the LGR5+ population appears to emerge specifically in the proximal outflow tract of human embryonic hearts and thereafter promotes cardiac development and alignment through expansion of the ISL1+TNNT2+ intermediates. The current study contributes to a deeper understanding of human cardiogenesis, which may uncover the putative origins of certain human congenital cardiac malformations.
  •  
5.
  • Witman, Nevin, et al. (författare)
  • Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration
  • 2020
  • Ingår i: Seminars in Cell and Developmental Biology. - Stockholm : Karolinska Institutet, Dept of Cell and Molecular Biology. - 1084-9521 .- 1096-3634.
  • Tidskriftsartikel (refereegranskat)abstract
    • The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration. Corrigendum in Semin Cell Dev Biol. 2021 Jan:109:151. DOI: 10.1016/j.semcdb.2020.09.008
  •  
6.
  • Witman, Nevin, 1982- (författare)
  • Heart Regeneration : Lessons from the Red Spotted Newt
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Unlike mammals, adult salamanders possess an intrinsic ability to regenerate complex organs and tissue types, making them an exciting and useful model to study tissue regeneration. The aims of this thesis are two fold, (1) to develop and characterize a reproducible cardiac regeneration model system in the newt, and (2) to decipher the cellular and molecular underpinnings involved in regeneration.In Paper I of this thesis we developed a novel and reproducible heart regeneration model system in the red-spotted newt and demonstrated for the first time the newt’s ability to regenerate functional myocardial muscle, following resection injury, without scarring. The observed findings coincide with an increase in several developmental cardiac transcription factors, wide-spread cellular proliferation of cardiomyocytes and non-cardiomyocyte populations in the ventricle and reverse-remodeling at later time points during regeneration. Of further interest was the identification of functionally active Islet1+ve and GATA4+ve cardiac precursor cells in regenerating areas. The observation of such cell types further compels the similarity between mammalian cardiac development and newt cardiac regeneration and justifies these animals as suitable model organisms for studying heart regeneration. In Paper II we wanted to decipher the molecular cues possibly driving cardiac regeneration in newts. Here we used qualitative and quantitative methods to delineate the function microRNAs (miRNAs) have in this process. One interesting candidate, miR-128, a known tumor suppressor miRNA and regulator of myogenesis, was found to have a regulatory role in controlling non-cardiomyocyte hyperplasia during newt cardiac regeneration. Of further interest was the discovery of a novel binding site of miR-128 in the 3’UTR of Islet1. We speculate that the natural increase in miR-128 expression levels during cardiac regeneration functions as a fine-tuning mechanism to control cellular proliferation of precursor cells. In Paper III of my thesis we sought to explore if a link exists between RNA editing, a wide-spread post-transcriptional process and regeneration. We observed that A-to-I editing enzymes (ADARs) are present in regenerating newt tissues and the localization of ADAR1 alternates between nuclear and cytoplasmic compartments during regeneration. This activity of ADAR1 during regeneration may be partly responsible for driving the cellular plasticity that is needed during multiple phases of tissue regeneration in the red-spotted newt.
  •  
7.
  • Witman, Nevin M., 1982-, et al. (författare)
  • ADAR-Related Activation of Adenosine-to-Inosine RNA Editing During Regeneration
  • 2013
  • Ingår i: Stem Cells and Development. - : Mary Ann Liebert Inc. - 1547-3287 .- 1557-8534. ; 22:16, s. 2254-2267
  • Tidskriftsartikel (refereegranskat)abstract
    • Urodele amphibians possess an amazing regenerative capacity that requires the activation of cellular plasticity in differentiated cells and progenitor/stem cells. Many aspects of regeneration in Urodele amphibians recapitulate development, making it unlikely that gene regulatory pathways which are essential for development are mutually exclusive from those necessary for regeneration. One such post-transcriptional gene regulatory pathway, which has been previously shown to be essential for functional metazoan development, is RNA editing. RNA editing catalyses discrete nucleotide changes in RNA transcripts, creating a molecular diversity that could create an enticing connection to the activated cellular plasticity found in newts during regeneration. To assess whether RNA editing occurs during regeneration, we demonstrated that GABRA3 and ADAR2 mRNA transcripts are edited in uninjured and regenerating tissues. Full open-reading frame sequences for ADAR1 and ADAR2, two enzymes responsible for adenosine-to-inosine RNA editing, were cloned from newt brain cDNA and exhibited a strong resemblance to ADAR (adenosine deaminase, RNA-specific) enzymes discovered in mammals. We demonstrated that ADAR1 and ADAR2 mRNA expression levels are differentially expressed during different phases of regeneration in multiple tissues, whereas protein expression levels remain unaltered. In addition, we have characterized a fascinating nucleocytoplasmic shuttling of ADAR1 in a variety of different cell types during regeneration, which could provide a mechanism for controlling RNA editing, without altering translational output of the editing enzyme. The link between RNA editing and regeneration provides further insights into how lower organisms, such as the newt, can activate essential molecular pathways via the discrete alteration of RNA sequences.
  •  
8.
  • Witman, Nevin, 1982-, et al. (författare)
  • miR-128 regulates non-myocyte hyperplasia, deposition of extracellular matrix and Islet1 expression during newt cardiac regeneration
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Cardiovascular disease is a global scourge to society, with novel therapeutic approaches required in order to alleviate the suffering caused by sustained cardiac damage. MicroRNAs (miRNAs) are being touted as one such approach in the fight against heart disease, acting as possible post-transcriptional molecular triggers responsible for invoking cardiac regeneration. To further ones understanding of miRNAs and cardiac regeneration, it is prudent to learn from organisms that can intrinsically regenerate their hearts following injury. Using the red-spotted newt, an adult chordate capable of cardiac regeneration, we decided to delve deeper into the role miRNAs play during this process.  RNA isolated from regenerating newt heart samples, was used in a microarray screen, to identify significantly expressed candidate miRNAs during newt cardiac regeneration. We performed quantitative qPCR analysis on several conserved miRNAs and found one in particular, miR-128, to be significantly elevated when cardiac hyperplasia is at its peak following injury. In-situ hybridisation techniques revealed a localised expression pattern for miR-128 in the cardiomyocytes and non-cardiomyocytes in close proximity to the regeneration zone and in vivo knockdown studies revealed a regulatory role for miR-128 in proliferating non-cardiomyocyte populations and extracellular matrix deposition. Finally, 3’UTR reporter assays revealed Islet1 as a biological target for miR-128, which was confirmed further through in vivo Islet1 transcriptional and translational expression analysis in regenerating newt hearts. From these studies we conclude that miR-128 regulates both cardiac hyperplasia and Islet1 expression during newt heart regeneration and that this information could be translated into future mammalian cardiac studies.
  •  
9.
  • Witman, Nevin, et al. (författare)
  • miR-128 regulates non-myocyte hyperplasia, deposition of extracellular matrix and Islet1 expression during newt cardiac regeneration
  • 2013
  • Ingår i: Developmental Biology. - : Elsevier. - 0012-1606 .- 1095-564X. ; 383:2, s. 253-263
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiovascular disease is a global scourge to society, with novel therapeutic approaches required in order to alleviate the suffering caused by sustained cardiac damage. MicroRNAs (miRNAs) are being touted as one such approach in the fight against heart disease, acting as possible post-transcriptional molecular triggers responsible for invoking cardiac regeneration. To further ones understanding of miRNAs and cardiac regeneration, it is prudent to learn from organisms that can intrinsically regenerate their hearts following injury. Using the red-spotted newt, an adult chordate capable of cardiac regeneration, we decided to delve deeper into the role miRNAs play during this process. RNA isolated from regenerating newt heart samples, was used in a microarray screen, to identify significantly expressed candidate miRNAs during newt cardiac regeneration. We performed quantitative qPCR analysis on several conserved miRNAs and found one in particular, miR-128, to be significantly elevated when cardiac hyperplasia is at its peak following injury. In-situ hybridisation techniques revealed a localised expression pattern for miR-128 in the cardiomyocytes and non-cardiomyocytes in close proximity to the regeneration zone and in vivo knockdown studies revealed a regulatory role for miR-128 in proliferating non-cardiomyocyte populations and extracellular matrix deposition. Finally, 3'UTR reporter assays revealed Islet1 as a biological target for miR-128, which was confirmed further through in vivo Islet1 transcriptional and translational expression analysis in regenerating newt hearts. From these studies we conclude that miR-128 regulates both cardiac hyperplasia and Islet1 expression during newt heart regeneration and that this information could be translated into future mammalian cardiac studies.
  •  
10.
  • Witman, Nevin, 1982-, et al. (författare)
  • Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury
  • 2011
  • Ingår i: Developmental Biology. - : Elsevier BV. - 0012-1606 .- 1095-564X. ; 354:1, s. 67-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Urodele amphibians, like the newt, are the champions of regeneration as they are able to regenerate many body parts and tissues. Previous experiments, however, have suggested that the newt heart has only a limited regeneration capacity, similar to the human heart. Using a novel, reproducible ventricular resection model, we show for the first time that adult newt hearts can fully regenerate without any evidence of scarring. This process is governed by increased proliferation and the up-regulation of cardiac transcription factors normally expressed during developmental cardiogenesis. Furthermore, we are able to identify cells within the newly regenerated regions of the myocardium that express the LIM-homeodomain protein Istet1 and GATA4, transcription factors found in cardiac progenitors. Information acquired from using the newt as a model organism may help to shed light on the regeneration deficits demonstrated in damaged human hearts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy