SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Witt Gesine) "

Sökning: WFRF:(Witt Gesine)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jahnke, Annika, et al. (författare)
  • Strategies for Transferring Mixtures of Organic Contaminants from Aquatic Environments into Bioassays
  • 2016
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 50:11, s. 5424-5431
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixtures of organic contaminants are ubiquitous ronment. Depending on their persistence and physicochemical properties, individual chemicals that make up the mixture partition and distribute within the environment and might then jointly elicit toxicological effects. For the assessment and monitoring of such mixtures, a variety of cell-based in vitro and low-complexity in vivo bioassays based on algae, daphnids or fish embryos are available. A very important and sometimes unrecognized challenge is how to combine sampling, extraction and dosing to transfer the mixtures from the environment into bioassays, while conserving (or re-establishing) their chemical composition at adjustable levels for concentration-effect assessment. This article outlines various strategies for quantifiable transfer from environmental samples including water, sediment, and biota into bioassays using total extraction or polymer-based passive sampling combined with either solvent spiking or passive dosing.
  •  
2.
  •  
3.
  • Rämö, Robert, et al. (författare)
  • Sediment Remediation Using Activated Carbon: Effects of Sorbent Particle Size and Resuspension on Sequestration of Metals and Organic Contaminants.
  • 2022
  • Ingår i: Environmental toxicology and chemistry. - : Wiley. - 1552-8618 .- 0730-7268. ; 41:4, s. 1096-1110
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin-layer capping using activated carbon (AC) has been described as a cost-effective in situ sediment remediation method for organic contaminants. In this study, we compare the capping efficiency of powdered AC (PAC) against granular AC (GAC) using contaminated sediment from Oskarshamn harbor, Sweden. The effects of resuspension on contaminant retention and cap integrity were also studied. Intact sediment cores were collected from the outer harbor and brought to the laboratory. Three thin-layer caps, consisting of PAC or GAC mixed with clay, or clay only, were added to the sediment surface. Resuspension was created using a motor-driven paddle to simulate propeller wash from ship traffic. Passive samplers were placed in the sediment and in the water column to measure the sediment-to-water release of PAHs, PCBs, and metals. Our results show that a thin-layer cap with PAC reduced sediment-to-water fluxes of PCBs by 57 % under static conditions and 91 % under resuspension. Thin-layer capping with GAC was less effective than PAC, but reduced fluxes of high-molecular weight PAHs. Thin-layer capping with AC was less effective in retaining metals, except for Cd, which release was significantly reduced by PAC. Resuspension generally decreased water concentrations of dissolved cationic metals, perhaps due to sorption to suspended sediment particles. Sediment resuspension in treatments without capping increased fluxes of PCBs with log Kow > 7 and PAHs with log Kow 5 6, but resuspension reduced PCB and PAH fluxes through the PAC thin-layer cap. Overall, PAC performed better than GAC, but adverse effects on the benthic community and transport of PAC to non-target areas are drawbacks that favor the use of GAC. This article is protected by copyright. All rights reserved.© 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy