SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wobst J) "

Sökning: WFRF:(Wobst J)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Winkler, MJ, et al. (författare)
  • Functional investigation of the coronary artery disease gene SVEP1
  • 2020
  • Ingår i: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 115:6, s. 67-
  • Tidskriftsartikel (refereegranskat)abstract
    • A missense variant of the sushi, von Willebrand factor type A, EGF and pentraxin domain containing protein 1 (SVEP1) is genome-wide significantly associated with coronary artery disease. The mechanisms how SVEP1 impacts atherosclerosis are not known. We found endothelial cells (EC) and vascular smooth muscle cells to represent the major cellular source of SVEP1 in plaques. Plaques were larger in atherosclerosis-prone Svep1 haploinsufficient (ApoE−/−Svep1+/−) compared to Svep1 wild-type mice (ApoE−/−Svep1+/+) and ApoE−/−Svep1+/− mice displayed elevated plaque neutrophil, Ly6Chigh monocyte, and macrophage numbers. We assessed how leukocytes accumulated more inside plaques in ApoE−/−Svep1+/− mice and found enhanced leukocyte recruitment from blood into plaques. In vitro, we examined how SVEP1 deficiency promotes leukocyte recruitment and found elevated expression of the leukocyte attractant chemokine (C-X-C motif) ligand 1 (CXCL1) in EC after incubation with missense compared to wild-type SVEP1. Increasing wild-type SVEP1 levels silenced endothelial CXCL1 release. In line, plasma Cxcl1 levels were elevated in ApoE−/−Svep1+/− mice. Our studies reveal an atheroprotective role of SVEP1. Deficiency of wild-type Svep1 increased endothelial CXCL1 expression leading to enhanced recruitment of proinflammatory leukocytes from blood to plaque. Consequently, elevated vascular inflammation resulted in enhanced plaque progression in Svep1 deficiency.
  •  
4.
  • Wobst, Heike J., et al. (författare)
  • Cytoplasmic Relocalization of TAR DNA-Binding Protein 43 Is Not Sufficient to Reproduce Cellular Pathologies Associated with ALS In vitro
  • 2017
  • Ingår i: Frontiers in Molecular Neuroscience. - : Frontiers Media SA. - 1662-5099. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the gene TARDBP, which encodes TAR DNA-binding protein 43 (TDP-43), are a rare cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). While the majority of mutations are found in the C-terminal glycine-rich domain, an alanine to valine amino acid change at position 90 (A90V) in the bipartite nuclear localization signal (NLS) of TDP-43 has been described. This sequence variant has previously been shown to cause cytoplasmic mislocalization of TDP-43 and decrease protein solubility, leading to the formation of insoluble aggregates. Since the A90V mutation has been described both in patients as well as healthy controls, its pathogenic potential in ALS and FTD remains unclear. Here we compare properties of overexpressed A90V to the highly pathogenic M337V mutation. Though both mutations drive mislocalization of the protein to the cytoplasm to the same extent, M337V produces more significant damage in terms of protein solubility, levels of pathogenic phosphorylation, and formation of C-terminal truncated protein species. Furthermore, the M337V, but not the A90V mutant, leads to a downregulation of histone deacetylase 6 and Ras GTPase-activating protein-binding protein. We conclude that in the absence of another genetic or environmental 'hit' the A90V variant is not sufficient to cause the deleterious phenotypes associated with ALS and FTD, despite prominent cytoplasmic protein relocalization of TDP-43.
  •  
5.
  • Wobst, Heike J., et al. (författare)
  • Truncation of the TAR DNA-binding protein 43 is not a prerequisite for cytoplasmic relocalization, and is suppressed by caspase inhibition and by introduction of the A90V sequence variant
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The RNA-binding and -processing protein TAR DNA-binding protein 43 (TDP-43) is heavily linked to the underlying causes and pathology of neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In these diseases, TDP-43 is mislocalized, hyperphosphorylated, ubiquitinated, aggregated and cleaved. The importance of TDP-43 cleavage in the disease pathogenesis is still poorly understood. Here we detail the use of D-sorbitol as an exogenous stressor that causes TDP-43 cleavage in HeLa cells, resulting in a 35 kDa truncated product that accumulates in the cytoplasm within one hour of treatment. We confirm that the formation of this 35 kDa cleavage product is mediated by the activation of caspases. Inhibition of caspases blocks the cleavage of TDP-43, but does not prevent the accumulation of full-length protein in the cytoplasm. Using D-sorbitol as a stressor and caspase activator, we also demonstrate that the A90V variant of TDP-43, which lies adjacent to the caspase cleavage site within the nuclear localization sequence of TDP-43, confers partial resistance against caspase-mediated generation of the 35 kDa cleavage product.
  •  
6.
  • Mauersberger, C, et al. (författare)
  • Loss of soluble guanylyl cyclase in platelets contributes to atherosclerotic plaque formation and vascular inflammation
  • 2022
  • Ingår i: Nature cardiovascular research. - : Springer Science and Business Media LLC. - 2731-0590. ; 1:12, s. 1174-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • Variants in genes encoding the soluble guanylyl cyclase (sGC) in platelets are associated with coronary artery disease (CAD) risk. Here, by using histology, flow cytometry and intravital microscopy, we show that functional loss of sGC in platelets of atherosclerosis-prone Ldlr−/− mice contributes to atherosclerotic plaque formation, particularly via increasing in vivo leukocyte adhesion to atherosclerotic lesions. In vitro experiments revealed that supernatant from activated platelets lacking sGC promotes leukocyte adhesion to endothelial cells (ECs) by activating ECs. Profiling of platelet-released cytokines indicated that reduced platelet angiopoietin-1 release by sGC-depleted platelets, which was validated in isolated human platelets from carriers of GUCY1A1 risk alleles, enhances leukocyte adhesion to ECs. Importantly, pharmacological sGC stimulation increased platelet angiopoietin-1 release in vitro and reduced leukocyte recruitment and atherosclerotic plaque formation in atherosclerosis-prone Ldlr−/− mice. Therefore, pharmacological sGC stimulation might represent a potential therapeutic strategy to prevent and treat CAD.
  •  
7.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy