SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wodniak Iwona) "

Sökning: WFRF:(Wodniak Iwona)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
2.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
3.
  • Sias, G., et al. (författare)
  • A locked mode indicator for disruption prediction on JET and ASDEX upgrade
  • 2019
  • Ingår i: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 138, s. 254-266
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this paper is to present a signal processing algorithm that, applied to the raw Locked Mode signal, allows us to obtain a disruption indicator in principle exploitable on different tokamaks. A common definition of such an indicator for different machines would facilitate the development of portable systems for disruption prediction, which is becoming of increasingly importance for the next tokamak generations. Moreover, the indicator allows us to overcome some intrinsic problems in the diagnostic system such as drift and offset. The behavior of the proposed indicator as disruption predictor, based on crossing optimized thresholds of the signal amplitude, has been analyzed using data of both JET and ASDEX Upgrade experiments. A thorough analysis of the disruption prediction performance shows how the indicator is able to recover some missed and tardy detections of the raw signal. Moreover, it intervenes and corrects premature or even wrong alarms due to, e.g., drifts and/or offsets.
  •  
4.
  •  
5.
  • Blanken, T. C., et al. (författare)
  • Real-time plasma state monitoring and supervisory control on TCV
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics (IOP). - 0029-5515 .- 1741-4326. ; 59:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state arc modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECI I) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.
  •  
6.
  • Cecconello, Marco, et al. (författare)
  • Observation of fast ion behaviour with a neutron emission profile monitor in MAST
  • 2012
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 52:9, s. 094015-
  • Tidskriftsartikel (refereegranskat)abstract
    • Preliminary measurements of neutron emissivity at the Mega Amp Spherical Tokamak (MAST) along collimated lines-of-sight showa clear correlation between the neutron emissivity temporal and spatial evolution and the evolution of different MHD instabilities. In particular, the variations in neutron emissivity during sawtooth oscillations are compared with changes in the classical fast ion slowing-down time, while fast ion losses are observed in bursts during fishbones or as a continuous process during long-lived modes.
  •  
7.
  • Cecconello, Marco, et al. (författare)
  • The 2.5 MeV neutron flux monitor for MAST
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; 753, s. 72-83
  • Tidskriftsartikel (refereegranskat)abstract
    • A proof-of-principle collimated Neutron flux Camera (NC) monitor for the measurement of the 2.45 MeV neutron emission from the deuterium–deuterium fusion reactions has been developed, installed and put into use at the Mega Ampere Spherical Tokamak (MAST). The NC measures the spatial and time resolved volume integrated neutron emissivity in deuterium fusion plasmas in the presence of auxiliary plasma heating along two equatorial and two diagonal lines of sight whose tangency radius can be varied between plasma discharges. This paper describes the NC design principles, their technical realization and its performances illustrated with experimental observations of different plasma scenarios. Neutron count rates in the range 0.1–1.5 MHz are routinely observed allowing time resolutions as high as 1 ms with a statistical uncertainty less than 10% and an energy threshold of 0.5 MeV. Examples of the effect of plasma instabilities on the neutron emission are presented. The good results obtained will be used for the design of the neutron flux camera monitor for MAST Upgrade.
  •  
8.
  • Sangaroon, Siriyaporn, et al. (författare)
  • A poloidal section neutron camera for MAST Upgrade
  • 2014
  • Ingår i: Fusion Reactor Diagnostics. - : AIP Publishing LLC. - 9780735412484 ; , s. 129-132
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The Mega Ampere Spherical Tokamak Upgrade (MAST Upgrade) is intended as a demonstration of the physics viability of the Spherical Tokamak (ST) concept and as a platform for contributing to ITER/DEMO physics. Concerning physics exploitation, MAST Upgrade plasma scenarios can contribute to the ITER Tokamak physics particularly in the field of fast particle behavior and current drive studies. At present, MAST is equipped with a prototype neutron camera (NC). On the basis of the experience and results from previous experimental campaigns using the NC, the conceptual design of a neutron camera upgrade (NC Upgrade) is being developed. As part of the MAST Upgrade, the NC Upgrade is considered a high priority diagnostic since it would allow studies in the field of fast ions and current drive with good temporal and spatial resolution. In this paper, we explore an optional design with the camera array viewing the poloidal section of the plasma from different directions.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy