SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wohlleben Wolfgang) "

Sökning: WFRF:(Wohlleben Wolfgang)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Heichlinger, Andrea, et al. (författare)
  • The MreB-like protein Mbl of S. coelicolor A3(2) depends on MreB for proper localization and contributes to spore wall synthesis.
  • 2011
  • Ingår i: Journal of Bacteriology. - 0021-9193. ; 193:7, s. 1533-1542
  • Tidskriftsartikel (refereegranskat)abstract
    • Most bacteria with a rod-shape morphology contain an actin-like cytoskeleton consisting of MreB polymers which form helical spirals underneath the cytoplasmic membrane to direct peptidoglycan synthesis for elongation of the cell wall. In contrast MreB of Streptomyces coelicolor is not required for vegetative growth, but has a role in sporulation. Beside MreB, S. coelicolor encodes two further MreB-like proteins, Mbl and SCO6166, whose function is unknown. Whereas MreB and Mbl are highly similar, SCO6166 is shorter, lacking the subdomains IB and IIB of actin-like proteins. Here we showed that MreB and Mbl are not functionally redundant but cooperate in spore wall synthesis. Expression analysis by semi-quantitative RT-PCR revealed distinct expression patterns. mreB and mbl are predominantly induced during morphological differentiation. In contrast sco6166 is strongly expressed during vegetative growth but switched off during sporulation. All genes could be deleted without affecting viability. Even a ΔmreB/mbl double mutant was viable. Δsco6166 had a wildtype phenotype. ΔmreB, Δmbl and ΔmreB/mbl produced swollen prematurely germinating spores that were sensitive to various kinds of stress, suggesting a defect in spore wall integrity. During aerial mycelium formation an Mbl-mCherry fusion protein colocalized with an MreB-eGFP fusion protein at the sporulation septa. Whereas MreB-eGFP localized properly in the Δmbl mutant, Mbl-mCherry localization depended on the presence of a functional MreB protein. Our results revealed that MreB and Mbl cooperate in synthesis of the thickened spore wall, while SCO6166 has a non-essential function during vegetative growth.
  •  
2.
  • Miethke, Marcus, et al. (författare)
  • Towards the sustainable discovery and development of new antibiotics
  • 2021
  • Ingår i: Nature Reviews Chemistry. - : Springer Nature. - 2397-3358. ; 5:10, s. 726-749
  • Forskningsöversikt (refereegranskat)abstract
    • An ever-increasing demand for novel antimicrobials to treat life-threatening infections caused by the global spread of multidrug-resistant bacterial pathogens stands in stark contrast to the current level of investment in their development, particularly in the fields of natural-product-derived and synthetic small molecules. New agents displaying innovative chemistry and modes of action are desperately needed worldwide to tackle the public health menace posed by antimicrobial resistance. Here, our consortium presents a strategic blueprint to substantially improve our ability to discover and develop new antibiotics. We propose both short-term and long-term solutions to overcome the most urgent limitations in the various sectors of research and funding, aiming to bridge the gap between academic, industrial and political stakeholders, and to unite interdisciplinary expertise in order to efficiently fuel the translational pipeline for the benefit of future generations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy